Question 49
Multiple Choice
Find the relative maxima of f ( x ) = cos 2 ( 4 x ) on the interval ( 0 , 3.142 ) by applying \text { Find the relative maxima of } f ( x ) = \cos ^ { 2 } ( 4 x ) \text { on the interval } ( 0,3.142 ) \text { by applying } Find the relative maxima of f ( x ) = cos 2 ( 4 x ) on the interval ( 0 , 3.142 ) by applying the First Derivative Test. Round numerical values in your answer to three decimal places.
A) relative maxima: ( 1.571 , 1 ) , ( 1.963 , 1 ) , ( 2.356 , 13.142 ) ( 1.571,1 ) , ( 1.963,1 ) , ( 2.356,13.142 ) ( 1.571 , 1 ) , ( 1.963 , 1 ) , ( 2.356 , 13.142 ) B) relative maxima: ( 0.393 , 0 ) ( 1.178 , 0 ) , ( 1.963 , 0 ) , ( 2.749 , 0 ) ( 0.393,0 ) ( 1.178,0 ) , ( 1.963,0 ) , ( 2.749,0 ) ( 0.393 , 0 ) ( 1.178 , 0 ) , ( 1.963 , 0 ) , ( 2.749 , 0 ) C) relative maxima: ( 0.785 , 1 ) , ( 1.571 , 1 ) , ( 2.356 , 1 ) ( 0.785,1 ) , ( 1.571,1 ) , ( 2.356,1 ) ( 0.785 , 1 ) , ( 1.571 , 1 ) , ( 2.356 , 1 ) D) relative maxima: ( 0.393 , 1 ) , ( 1.178 , 1 ) , ( 1.963 , 1 ) , ( 2.749 , 1 ) ( 0.393,1 ) , ( 1.178,1 ) , ( 1.963,1 ) , ( 2.749,1 ) ( 0.393 , 1 ) , ( 1.178 , 1 ) , ( 1.963 , 1 ) , ( 2.749 , 1 ) E) relative maxima: ( 0.393 , 1 ) , ( 0.785 , 1 ) , ( 1.178 , 1 ) ( 0.393,1 ) , ( 0.785,1 ) , ( 1.178,1 ) ( 0.393 , 1 ) , ( 0.785 , 1 ) , ( 1.178 , 1 )
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge
Access For Free