Solved

Suppose a 32-Pound Weight Is Suspended on a Spring 13 foot \frac { 1 } { 3 } \text { foot }

Question 16

Multiple Choice

Suppose a 32-pound weight is suspended on a spring. The weight is pulled 13 foot \frac { 1 } { 3 } \text { foot } below the equilibrium position and released. The motion takes place in a Med that furnishes a damping force of magnitude 18\frac { 1 } { 8 } speed at all times. Assume that the weight stretches the spring 23\frac { 2 } { 3 } foot from its natural position. Find a formula for the position of the weight as a function of time tt .


A) y(t) =3(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = 3 \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

B) y(t) =et/1612(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = \frac { e ^ { - t / 16 } } { 12 } \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

C) y(t) =et/163(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = \frac { e ^ { - t / 16 } } { 3 } \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

D) y(t) =6(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = 6 \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

E) y(t) =(cos12,287t16+12,28712,287sin12,287t16) y ( t ) = \left( \cos \frac { \sqrt { 12,287 } t } { 16 } + \frac { \sqrt { 12,287 } } { 12,287 } \sin \frac { \sqrt { 12,287 } t } { 16 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents