Solved

Find the Particular Solution of the Differential Equation wgytt(t)+byt(t)+ky(t)=wgF(t)\frac { w } { g } y ^ { tt } ( t ) + b y ^ { t } ( t ) + k y ( t ) = \frac { w } { g } F ( t )

Question 22

Multiple Choice

Find the particular solution of the differential equation wgytt(t) +byt(t) +ky(t) =wgF(t) \frac { w } { g } y ^ { tt } ( t ) + b y ^ { t } ( t ) + k y ( t ) = \frac { w } { g } F ( t ) for the oscillating motion of an object on the end of a spring. In the equation, yy is the displacement from equilibrium (positive direction is downward) measured in feet, and tt is the time in seconds (see figure) . The constant w=8w = 8 is the weight of the object, g=128g = 128 is the acceleration due to gravity, b=1b = 1 is the magnitude of the resistance to the motion, k=4k = 4 is the spring constant from Hooke's Law, F(t) =4sin8tF ( t ) = 4 \sin 8 t is the acceleration imposed on the system, y(0) =17y ( 0 ) = \frac { 1 } { 7 } and yt(0) =9y ^ {t } ( 0 ) = - 9
 Find the particular solution of the differential equation  \frac { w } { g } y ^ { tt } ( t )  + b y ^ { t } ( t )  + k y ( t )  = \frac { w } { g } F ( t )   for the oscillating motion of an object on the end of a spring. In the equation,  y  is the displacement from equilibrium (positive direction is downward)  measured in feet, and  t  is the time in seconds (see figure) . The constant  w = 8  is the weight of the object,  g = 128  is the acceleration due to gravity,  b = 1  is the magnitude of the resistance to the motion,  k = 4  is the spring constant from Hooke's Law,  F ( t )  = 4 \sin 8 t  is the acceleration imposed on the system,  y ( 0 )  = \frac { 1 } { 7 }  and  y ^ {t } ( 0 )  = - 9     A)   y = \left( \frac { 39 } { 224 } + \frac { 213 } { 28 } t \right)  e ^ { - 8 t } - \frac { 1 } { 36 } \cos 8 t  B)  y = \left( \frac { 39 } { 224 } - \frac { 213 } { 28 } t \right)  e ^ { - 8 t } - \frac { 1 } { 32 } \cos 8 t  C)   y = \left( \frac { 43 } { 252 } - \frac { 272 } { 35 } t \right)  e ^ { - 8 t } - \frac { 1 } { 34 } \cos 8 t  D)   y = \left( \frac { 43 } { 252 } + \frac { 272 } { 35 } t \right)  e ^ { - 8 t } - \frac { 1 } { 30 } \cos 8 t  E)   y = \left( \frac { 39 } { 224 } - \frac { 272 } { 35 } t \right)  e ^ { - 8 t } - \frac { 1 } { 40 } \cos 8 t


A) y=(39224+21328t) e8t136cos8ty = \left( \frac { 39 } { 224 } + \frac { 213 } { 28 } t \right) e ^ { - 8 t } - \frac { 1 } { 36 } \cos 8 t
B) y=(3922421328t) e8t132cos8ty = \left( \frac { 39 } { 224 } - \frac { 213 } { 28 } t \right) e ^ { - 8 t } - \frac { 1 } { 32 } \cos 8 t
C) y=(4325227235t) e8t134cos8ty = \left( \frac { 43 } { 252 } - \frac { 272 } { 35 } t \right) e ^ { - 8 t } - \frac { 1 } { 34 } \cos 8 t
D) y=(43252+27235t) e8t130cos8ty = \left( \frac { 43 } { 252 } + \frac { 272 } { 35 } t \right) e ^ { - 8 t } - \frac { 1 } { 30 } \cos 8 t
E) y=(3922427235t) e8t140cos8ty = \left( \frac { 39 } { 224 } - \frac { 272 } { 35 } t \right) e ^ { - 8 t } - \frac { 1 } { 40 } \cos 8 t

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents