Solved

Use Taylor's Theorem to Find the First Four Terms of the Series

Question 44

Multiple Choice

Use Taylor's Theorem to find the first four terms of the series solution of ytt+exyt(sinx) y=0y ^ { tt } + e ^ { x } y ^ {t } - ( \sin x ) y = 0 given the initial conditions y(0) =5y ( 0 ) = - 5 , and yt(0) =7y ^ { t } ( 0 ) = 7 and use it to calculate y(14) y \left( \frac { 1 } { 4 } \right) . Round your answer to three decimal places.


A) y=5+71!x52!x273!x3+,y(14) 3.424y = - 5 + \frac { 7 } { 1 ! } x - \frac { 5 } { 2 ! } x ^ { 2 } - \frac { 7 } { 3 ! } x ^ { 3 } + \cdots , y \left( \frac { 1 } { 4 } \right) \approx - 3.424
B) y=5+71!x52!x2+73!x3+;y(14) 3.388y = - 5 + \frac { 7 } { 1 ! } x - \frac { 5 } { 2 ! } x ^ { 2 } + \frac { 7 } { 3 ! } x ^ { 3 } + \cdots ; y \left( \frac { 1 } { 4 } \right) \approx - 3.388
C) y=5+71!x212!x2103!x3+,y(14) 3.932y = - 5 + \frac { 7 } { 1 ! } x - \frac { 21 } { 2 ! } x ^ { 2 } - \frac { 10 } { 3 ! } x ^ { 3 } + \cdots , y \left( \frac { 1 } { 4 } \right) \approx - 3.932
D) y=5+71!x72!x2+53!x3+,y(14) 3.456y = - 5 + \frac { 7 } { 1 ! } x - \frac { 7 } { 2 ! } x ^ { 2 } + \frac { 5 } { 3 ! } x ^ { 3 } + \cdots , y \left( \frac { 1 } { 4 } \right) \approx - 3.456
E) y=5+71!x72!x253!x3+;y(14) 3.482y = - 5 + \frac { 7 } { 1 ! } x - \frac { 7 } { 2 ! } x ^ { 2 } - \frac { 5 } { 3 ! } x ^ { 3 } + \cdots ; y \left( \frac { 1 } { 4 } \right) \approx - 3.482

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents