Solved

Professor Pruefung Wanted to Examine If Performance in Quizzes Can  Om nibus Tests of Model Coeffcients \text { Om nibus Tests of Model Coeffcients }

Question 5

Essay

Professor Pruefung wanted to examine if performance in quizzes can predict whether a student will pass or fail the final exam. The independent variables are scores in two pop quizzes (Quiz1, Quiz2), and the dependent variable is a dichotomous variable (pass = 1 vs. fail = 0). Below is part of the output of the analysis.
a. Professor Pruefung assumed that the better a student performed in the quizzes (a higher score indicates better performance), the higher the odds that he/she will pass the final exam. If that is the case, what are the expected signs for b1 and b2? Do the results confirm the expectation?
b. Based on the tables, is there any indication of assumptions violation? If so, which assumption(s) has (have) been violated?
c. What are the possible consequences of the assumption violation?


 Om nibus Tests of Model Coeffcients \text { Om nibus Tests of Model Coeffcients }
 Chi-square df Sig.  Step  Step 24.0552.0001 Block 24.0552.000 Model 24.0552.000\begin{array}{ccccc}\hline & & \text { Chi-square } & d f & \text { Sig. } \\\hline{\text { Step }} & \text { Step } & 24.055 & 2 & .000 \\1 & \text { Block } & 24.055 & 2 & .000 \\& \text { Model } & 24.055 & 2 & .000\end{array}

 Model Summary \text { Model Summary }
 Step 2Log Cox & SnellNagelkerke  likelihood R Square R Square 122.998.452.653\begin{array}{cccc}\hline {\text { Step }} & {-2 \mathrm{Log}} & \text { Cox \& Snell} & \text {Nagelkerke } \\& \text { likelihood } & R \text { Square } & R \text { Square } \\\hline 1 & 22.998 & .452 & .653\end{array}
 Variables in the Equation  B  S.E.  Wald df Sig. Exp(B) Step 1  Quiz1 1.5571.0642.1401.1434.745 Quiz2 .5351.023.2731.601.586 Constant 21.7218.9905.8381.016.000\begin{array}{l}\text { Variables in the Equation }\\\begin{array}{llllllll}\hline & & \text { B } & \text { S.E. } & \text { Wald } & d f & \text { Sig. } & \operatorname{Exp}(\mathrm{B}) \\\hline {\text { Step 1 }} & \text { Quiz1 } & 1.557 & 1.064 & 2.140 & 1 & .143 & 4.745 \\& \text { Quiz2 } & -.535 & 1.023 & .273 & 1 & .601 & .586 \\& \text { Constant } & -21.721 & 8.990 & 5.838 & 1 & .016 & .000 \\\hline\end{array}\end{array}


 Professor Pruefung wanted to examine if performance in quizzes can predict whether a student will pass or fail the final exam. The independent variables are scores in two pop quizzes (Quiz1, Quiz2), and the dependent variable is a dichotomous variable (pass = 1 vs. fail = 0). Below is part of the output of the analysis. a. Professor Pruefung assumed that the better a student performed in the quizzes (a higher score indicates better performance), the higher the odds that he/she will pass the final exam. If that is the case, what are the expected signs for b<sub>1</sub> and b<sub>2</sub>? Do the results confirm the expectation? b. Based on the tables, is there any indication of assumptions violation? If so, which assumption(s) has (have) been violated? c. What are the possible consequences of the assumption violation?     \text { Om nibus Tests of Model Coeffcients }   \begin{array}{ccccc} \hline & & \text { Chi-square } & d f & \text { Sig. } \\ \hline{\text { Step }} & \text { Step } & 24.055 & 2 & .000 \\ 1 & \text { Block } & 24.055 & 2 & .000 \\ & \text { Model } & 24.055 & 2 & .000 \end{array}    \text { Model Summary }   \begin{array}{cccc} \hline {\text { Step }} & {-2 \mathrm{Log}} & \text { Cox \& Snell} & \text {Nagelkerke } \\ & \text { likelihood } & R \text { Square } & R \text { Square } \\ \hline 1 & 22.998 & .452 & .653 \end{array}     \begin{array}{l} \text { Variables in the Equation }\\ \begin{array}{llllllll} \hline & & \text { B } & \text { S.E. } & \text { Wald } & d f & \text { Sig. } & \operatorname{Exp}(\mathrm{B}) \\ \hline {\text { Step 1 }} & \text { Quiz1 } & 1.557 & 1.064 & 2.140 & 1 & .143 & 4.745 \\ & \text { Quiz2 } & -.535 & 1.023 & .273 & 1 & .601 & .586 \\ & \text { Constant } & -21.721 & 8.990 & 5.838 & 1 & .016 & .000 \\ \hline \end{array} \end{array}

Correct Answer:

verifed

Verified

a. The signs of b1 and b2 should be positi...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents