1. (∀x) (∀y) [(Px • Py) ⊃ Pf(x,y) ]
2. (∃x) [Px • (∃y) (Py • x≠y • Rxy) ]
-Which of the following propositions is derivable from the given premises in FF?
A) (∃x) (∃y) [Pf(x,y) • Rxy • x≠y]
B) (∃x) (∃y) [Pf(x) • Rxy • x≠y]
C) (∃x) (∃y) [Pf(f(x) ) • Rxy • x≠y]
D) (∀x) (∀y) Pf(x,y)
E) (∀x) Pf(x,x)
Correct Answer:
Verified
Q159: 1. (∀x)(∀y)[f(x)=y ⊃ (Pax • Qay)]
2. ∼Pab
-Which
Q160: 1. (∀x)(∀y)[f(x)=y ⊃ (Pax • Qay)]
2. ∼Pab
-Which
Q161: 1. (∀x)(∀y)(∀z)[(Pxy • Pyz) ⊃ Pxz]
2. (∀x)Pxf(x)
-Which
Q162: 1. (∀x)(∀y)(∀z)[(Pxy • Pyz) ⊃ Pxz]
2. (∀x)Pxf(x)
-Which
Q163: 1. (∀x)(∀y)[(Px • Py) ⊃ Pf(x,y)]
2. (∃x)[Px
Q165: 1. (∀x){Px ⊃ (∃y)[Py • f(x)=y]}
2. Pa
Q166: 1. (∀x){Px ⊃ (∃y)[Py • f(x)=y]}
2. Pa
Q167: 1. (∀x)[(Px • Qx) ⊃ Rf(x)]
2. (∀x)[Rx
Q168: 1. (∀x)[(Px • Qx) ⊃ Rf(x)]
2. (∀x)[Rx
Q169: 1. (∀x)(∀y)(∃z)Sf(x)yz
2. (∀x)(∀y)(∀z)[Sxyz ⊃ ∼(Cxyz
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents