Solved

Suppose You Wish to Explain Variation in Body Mass Index BMIi=β0+β1 Height iB M I _ { i } = \beta _ { 0 } + \beta _ { 1 } \text { Height } _ { i }

Question 22

Multiple Choice

Suppose you wish to explain variation in body mass index (BMI) by variation in height (in inches) by estimating the model BMIi=β0+β1 Height iB M I _ { i } = \beta _ { 0 } + \beta _ { 1 } \text { Height } _ { i }
And you suspect heteroskedasticity of the form Var(ε) =σ2 Height i4\operatorname { Var } ( \varepsilon ) = \sigma ^ { 2 } \text { Height } _ { i } ^ { 4 }
) You could perform Weighted Least Squares by estimating the model


A) BMIi=β0+β1 Height iB M I _ { i } = \beta _ { 0 } + \beta _ { 1 } \text { Height } _ { i } .
B)  BMI i/ Height i=β0(1/ Height i) +β1\text { BMI } _ { i } / \text { Height } _ { i } = \beta _ { 0 } \left( 1 / \text { Height } _ { i } \right) + \beta _ { 1 } .
C) BMIi/ Height i2=β0(1/ Height i2) +β1(1/ Height i) B M I _ { i } / \text { Height } _ { i } ^ { 2 } = \beta _ { 0 } \left( 1 / \text { Height } _ { i } ^ { 2 } \right) + \beta _ { 1 } \left( 1 / \text { Height } _ { i } \right) .
D) 1=β0(1/BMIi) +β1 Height i/BMIi1 = \beta _ { 0 } \left( 1 / B M I _ { i } \right) + \beta _ { 1 } \text { Height } _ { i } / B M I _ { i } .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents