Solved

(Requires Matrix Algebra)The Population Multiple Regression Model Can Be Written (Y1Y2OYn)\left(\begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\O \\Y _ { n }\end{array}\right)

Question 44

Essay

(Requires Matrix Algebra)The population multiple regression model can be written in matrix form as
Y = Xβ + U
where
Y = (Y1Y2OYn)\left(\begin{array} { l } Y _ { 1 } \\Y _ { 2 } \\O \\Y _ { n }\end{array}\right) , U = (u1u2Oun)\left( \begin{array} { c } u _ { 1 } \\u _ { 2 } \\\mathrm { O } \\u _ { n }\end{array} \right) , X = (1X11 NXk1W11 NWr11X12 NXk2W12 NWr2OOROORO1X1n NXknW1n NWm)\left(\begin{array} { l } 1 &X_{11}& \mathrm{~N} &X_{k 1}& W_{11} &\mathrm{~N} &W_{r 1}\\1 &X_{12}& \mathrm{~N}& X_{k 2} &W_{12}& \mathrm{~N}& W_{r 2}\\O&O&R&O&O&R&O\\1 &X_{1 n}& \mathrm{~N}& X_{k n} &W_{1 n} &\mathrm{~N}& W_{m}\\\end{array}\right) , and β = (β0β1Oβk)\left( \begin{array} { l } \beta _ { 0 } \\\beta _ { 1 } \\\mathrm { O } \\\beta _ { k }\end{array} \right) Note that the X matrix contains both k endogenous regressors and (r +1)included exogenous regressors (the constant is obviously exogenous).
The instrumental variable estimator for the overidentified case is β^IV=[XZ(ZZ)1ZX]1XZ(ZZ)1ZY,\hat { \beta } ^ { I V } = \left[ X ^ { \prime } Z \left( Z ^ { \prime } Z \right) ^ { - 1 } Z ^ { \prime } X \right] ^ { - 1 } X ^ { \prime } Z \left( Z ^ { \prime } Z \right) ^ { - 1 } Z ^ { \prime } Y, where Z is a matrix, which contains two types of variables: first the r included exogenous regressors plus the constant, and second, m instrumental variables.
Z = (1Z11 NZm1W11 NWr11Z12 NZm2W12 NWr2OOROORO1Z1n NZmnW1n NWm)\left(\begin{array} { l } 1 &Z_{11} &\mathrm{~N}& Z_{m 1}& W_{11}& \mathrm{~N}& W_{r 1}\\1 &Z_{12}& \mathrm{~N}& Z_{m 2} &W_{12}& \mathrm{~N} &W_{r 2}\\O&O&R&O &O& R &O \\1 &Z_{1 n }&\mathrm{~N}& Z_{mn }& W_{1 n}& \mathrm{~N} &W_{m}\end{array}\right) It is of order n × (m+r+1).
For this estimator to exist, both ( ZZ ^ { \prime } Z)and [ XX ^ { \prime } Z( ZZ ^ { \prime } Z)-1
ZZ ^ { \prime } X] must be invertible. State the conditions under which this will be the case and relate them to the degree of overidentification.

Correct Answer:

verifed

Verified

In order for a matrix to be invertible, ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents