Solved

Computer Products Produces Two Keyboards,Regular and Special B)Maximize $128R+$720S\quad \$ 128 R + \$ 720 S

Question 217

Multiple Choice

Computer Products produces two keyboards,Regular and Special.Regular keyboards have a unit contribution margin of $128,and Special keyboards have a unit contribution margin of $720.The demand for Regulars exceeds Computer Product's production capacity,which is limited by available machine-hours and direct manufacturing labor-hours.The maximum demand for Special keyboards is 80 per month.Management desires a product mix that will maximize the contribution toward fixed costs and profits. Direct manufacturing labor is limited to 1,600 hours a month and machine-hours are limited to 1,200 a month.The Regular keyboards require 20 hours of labor and 8 machine-hours.Special keyboards require 34 labor-hours and 20 machine-hours.
Let R represent Regular keyboards and S represent Special keyboards.The correct set of equations for the keyboard production process is ________.


A)  Maxindze: $128R+5720 S Conslrainls:  Labor-hours: 20R+31S1,600 Machane-hours: 8R+20S1,200 Special: S80S0 Regular: R0\begin{array}{ll}\text { Maxindze: }&\$ 128 \mathrm{R}+5720 \mathrm{~S}\\\text { Conslrainls: }\\\text { Labor-hours: } & 20 R+31 S \leq 1,600 \\\text { Machane-hours: } & 8 R+20 S \leq 1,200 \\\text { Special: } & S \leq 80 \\& S \geq 0 \\\text { Regular: } & R \geq 0\end{array}
B) Maximize: $128R+$720S\quad \$ 128 R + \$ 720 S
Constraints:
Labor-hours: 20R+34 S1,600\quad 20 \mathrm { R } + 34 \mathrm {~S} \geq 1,600
Machine-hours: 8R+20S1,200\quad 8 R + 20 S \geq 1,200
Special: S80\quad S \geq 80
S0\quad\quad\quad\quad S \geq 0
Regular: R0\quad \mathrm { R } \geq 0
C)  Maximize: $720 S+$128R Constraints:  Labor-hours: 20R+8 S1,600 Machine-hours: 34R+20 S1,200 Special: S80 S0 Regular: R0\begin{array}{ll}\text { Maximize: } & \$ 720 \mathrm{~S}+\$ 128 \mathrm{R} \\\text { Constraints: } & \\\text { Labor-hours: } & 20 \mathrm{R}+8 \mathrm{~S} \leq 1,600 \\\text { Machine-hours: } & 34 \mathrm{R}+20 \mathrm{~S} \leq 1,200 \\\text { Special: } & \mathrm{S} \leq 80 \\& \mathrm{~S} \geq 0 \\\text { Regular: } & \mathrm{R} \geq 0\end{array}
D)  Maximize: $128R+$720 S Constraints:  Labor-hours: 20R+34 S1,600 Machine-hours: 8R+20 S1,200 Special: S80 S0 Regular: R0\begin{array}{ll}\text { Maximize: } & \$ 128 \mathrm{R}+\$ 720 \mathrm{~S} \\\text { Constraints: } & \\\text { Labor-hours: } & 20 \mathrm{R}+34 \mathrm{~S} \leq 1,600 \\\text { Machine-hours: } & 8 \mathrm{R}+20 \mathrm{~S} \leq 1,200 \\\text { Special: } & \mathrm{S} \geq 80 \\& \mathrm{~S} \leq 0 \\\text { Regular: } & \mathrm{R} \leq 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents