Solved

Refer to the Information in the Graph Below 23x+4(4x2)dx\int _ { - 2 } ^ { - 3 x + 4 } \left( 4 - x ^ { 2 } \right) d x

Question 95

Multiple Choice

Refer to the information in the graph below. Set up a definite integral or sum of definite integrals that gives the area of the shaded portion.  Refer to the information in the graph below. Set up a definite integral or sum of definite integrals that gives the area of the shaded portion.   A)   \int _ { - 2 } ^ { - 3 x + 4 } \left( 4 - x ^ { 2 } \right)  d x  B)   \int _ { - 2 } ^ { 0 } \left( 4 - x ^ { 2 } \right)  d x  +  \int _ { 0 } ^ { 1 } [ 4 - ( - 3 x + 4 )  ] d x  C)   \int _ { - 2 } ^ { 1 } \left[ 4 + ( - 3 x + 4 )  - x ^ { 2 } \right] d x  D)   \int _ { - 2 } ^ { 0 } \left( 4 - x ^ { 2 } \right)  d x  +  \int _ { 0 } ^ { 1 } \left( - 3 x + 4 - x ^ { 2 } \right)  d x  E)  none of these


A) 23x+4(4x2) dx\int _ { - 2 } ^ { - 3 x + 4 } \left( 4 - x ^ { 2 } \right) d x
B) 20(4x2) dx\int _ { - 2 } ^ { 0 } \left( 4 - x ^ { 2 } \right) d x + 01[4(3x+4) ]dx\int _ { 0 } ^ { 1 } [ 4 - ( - 3 x + 4 ) ] d x
C) 21[4+(3x+4) x2]dx\int _ { - 2 } ^ { 1 } \left[ 4 + ( - 3 x + 4 ) - x ^ { 2 } \right] d x
D) 20(4x2) dx\int _ { - 2 } ^ { 0 } \left( 4 - x ^ { 2 } \right) d x + 01(3x+4x2) dx\int _ { 0 } ^ { 1 } \left( - 3 x + 4 - x ^ { 2 } \right) d x
E) none of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents