Solved

Suppose K, L, and M Grow at Constant Rates Given gˉk\bar { g } _ { k }

Question 48

Multiple Choice

Suppose k, l, and m grow at constant rates given by gˉk\bar { g } _ { k }  Suppose k, l, and m grow at constant rates given by  \bar { g } _ { k }    And  \bar { g } _ { m }  What is the growth rate of y if  y = ( m k l )  ^ { 1 / 3 } ?  A)   g _ { y } = ( 1 / 3 )  \bar { g } _ { m } + ( 1 / 3 )  \bar { g } _ { k } + ( 1 / 3 )  \bar { g } _ { l }  B)   \bar { g } _ { y } = \frac { 1 } { 3 \left( \bar { g } _ { m } - \bar { g } _ { k } - \bar { g } _ { l } \right)  }  C)   \bar { g } _ { y } = 3 \left( \bar { g } _ { m } + \bar { g } _ { k } + \bar { g } _ { l } \right)   D)   \bar { g } _ { y } = \left( \bar { g } _ { m } ^ { \frac { 1 } { 3 } } + g _ { k } ^ { \frac { 1 } { 3 } } + g _ { l } ^ { \frac { 1 } { 3 } } \right)   E)   \bar { g } _ { y } = \frac { 2 } { 3 \left( \bar { g } _ { m } + \bar { g } _ { k } - \bar { g } _ { l } \right)  } And gˉm\bar { g } _ { m }
What is the growth rate of y if y=(mkl) 1/3?y = ( m k l ) ^ { 1 / 3 } ?


A) gy=(1/3) gˉm+(1/3) gˉk+(1/3) gˉlg _ { y } = ( 1 / 3 ) \bar { g } _ { m } + ( 1 / 3 ) \bar { g } _ { k } + ( 1 / 3 ) \bar { g } _ { l }
B) gˉy=13(gˉmgˉkgˉl) \bar { g } _ { y } = \frac { 1 } { 3 \left( \bar { g } _ { m } - \bar { g } _ { k } - \bar { g } _ { l } \right) }
C) gˉy=3(gˉm+gˉk+gˉl) \bar { g } _ { y } = 3 \left( \bar { g } _ { m } + \bar { g } _ { k } + \bar { g } _ { l } \right)
D) gˉy=(gˉm13+gk13+gl13) \bar { g } _ { y } = \left( \bar { g } _ { m } ^ { \frac { 1 } { 3 } } + g _ { k } ^ { \frac { 1 } { 3 } } + g _ { l } ^ { \frac { 1 } { 3 } } \right)
E) gˉy=23(gˉm+gˉkgˉl) \bar { g } _ { y } = \frac { 2 } { 3 \left( \bar { g } _ { m } + \bar { g } _ { k } - \bar { g } _ { l } \right) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents