Solved

The Problem the Individual Solves to Derive the Labor Supply maxc,LU(c,L)=logc1/21ˉL1/3 subject to c+Sˉ=wL\max _ { c , L } U ( c , L ) = \log c - 1 / 2 \frac { 1 } { \bar { \ell } } L ^ { 1 / 3 } \text { subject to } c + \bar { S } = w L

Question 86

Multiple Choice

The problem the individual solves to derive the labor supply is:


A) maxc,LU(c,L) =logc1/21ˉL1/3 subject to c+Sˉ=wL\max _ { c , L } U ( c , L ) = \log c - 1 / 2 \frac { 1 } { \bar { \ell } } L ^ { 1 / 3 } \text { subject to } c + \bar { S } = w L
B) maxctody cfarr U(ctoduy cfuture ) =logctoday +βlogcfuture  subject toc ctoday +cfuture 1+R=Wˉ\max _ { c _ { \text {tody } } c _ { \text {farr } } } U \left( c _ { \text {toduy } } c _ { \text {future } } \right) = \log c _ { \text {today } } + \beta \log c _ { \text {future } } \text { subject toc } c _ { \text {today } } + \frac { c _ { \text {future } } } { 1 + R } = \bar { W }
C) maxcU(c) =logc subject to Pc=wL\max _ { c }U ( c ) = \log c \text { subject to } P c = w L

D) maxc,tU(c,ˉ) =αlogc+(1α) ˉ subject to cwˉ=wL\max _ { c , t } U ( c , \bar { \ell } ) = \alpha \cdot \log c + ( 1 - \alpha ) \cdot \bar { \ell } \text { subject to } c - w \bar { \ell } = w L
E) maxk,LU(K,L) =AˉK13L23 subject to C=rK+wL\max _ { k , L } U ( K , L ) = \bar { A } K ^ { \frac { 1 } { 3 } } L ^ { \frac { 2 } { 3 } } \text { subject to } C = r K + w L

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents