Question 18
Multiple Choice
Consider a semi-infinite, elastic, vibrating string, with zero initial position and velocity, driven by a vertical force at x = 0 x = 0 x = 0 , so that u ( 0 , t ) = f ( t ) u ( 0 , t ) = f ( t ) u ( 0 , t ) = f ( t ) . Assume that lim x → ∞ u ( x , t ) = 0 \lim _ { x \rightarrow \infty } u ( x , t ) = 0 lim x → ∞ u ( x , t ) = 0 . The mathematical model for the deflection, u ( x , t ) u ( x , t ) u ( x , t ) , is
A) α 2 ∂ 2 u ∂ x 2 = ∂ 2 u ∂ t 2 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u t ( x , 0 ) = 0 \alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0 α 2 ∂ x 2 ∂ 2 u = ∂ t 2 ∂ 2 u , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u t ( x , 0 ) = 0 B) α 2 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ t 2 = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u t ( x , 0 ) = 0 \alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u _ { t } ( x , 0 ) = 0 α 2 ∂ x 2 ∂ 2 u + ∂ t 2 ∂ 2 u = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u t ( x , 0 ) = 0 C) α 2 ∂ 2 u ∂ x 2 = ∂ u ∂ t , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u t ( x , 0 ) = 0 \alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial u } { \partial t } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0 α 2 ∂ x 2 ∂ 2 u = ∂ t ∂ u , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u t ( x , 0 ) = 0 D) α 2 ∂ 2 u ∂ x 2 + ∂ u ∂ t = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u t ( x , 0 ) = 0 \alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } + \frac { \partial u } { \partial t } = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u _ { t } ( x , 0 ) = 0 α 2 ∂ x 2 ∂ 2 u + ∂ t ∂ u = 0 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = 0 , u t ( x , 0 ) = 0 E) α 2 ∂ 2 u ∂ x 2 = ∂ 2 u ∂ t 2 , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u t ( x , 0 ) = 0 \alpha ^ { 2 } \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = \frac { \partial ^ { 2 } u } { \partial t ^ { 2 } } , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u _ { t } ( x , 0 ) = 0 α 2 ∂ x 2 ∂ 2 u = ∂ t 2 ∂ 2 u , u ( 0 , t ) = f ( t ) , u ( x , 0 ) = f ( t ) , u t ( x , 0 ) = 0
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge
Access For Free