Solved

Consider the Parameterized Bessel's Differential Equation x2y+xy+(α2x2n2)y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( \alpha ^ { 2 } x ^ { 2 } - n ^ { 2 } \right) y = 0

Question 39

Multiple Choice

Consider the parameterized Bessel's differential equation x2y+xy+(α2x2n2) y=0x ^ { 2 } y ^ { \prime \prime } + x y ^ { \prime } + \left( \alpha ^ { 2 } x ^ { 2 } - n ^ { 2 } \right) y = 0 along with the conditions y(0) y ( 0 ) is bounded, y(2) =0y ( 2 ) = 0 . The solution of this eigenvalue problem is (Jn(zn) =0) \left( J _ { n } \left( z _ { n } \right) = 0 \right)


A) α=zn/2,y=Jn(znx/2) ,n=1,2,3,\alpha = z _ { n } / 2 , y = J _ { n } \left( z _ { n } x / 2 \right) , n = 1,2,3 , \ldots
B) α=zn2/4,y=Jn(znx/2) ,n=1,2,3,\alpha = z _ { n } ^ { 2 } / 4 , y = J _ { n } \left( z _ { n } x / 2 \right) , n = 1,2,3 , \ldots
C) α=zn,y=Jn(zn/2x) ,n=1,2,3,\alpha = z _ { n } , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
D) α=zn/2,y=Jn(zn/2x) ,n=1,2,3,\alpha = z _ { n } / 2 , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots
E) α=zn2/4,y=Jn(zn/2x) ,n=1,2,3,\alpha = z _ { n } ^ { 2 } / 4 , y = J _ { n } \left( \sqrt { z _ { n } / 2 } x \right) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents