Solved

Assume a Bead of Mass mm Slides Along the Curve y=f(x)y = f ( x )

Question 2

Multiple Choice

Assume a bead of mass mm slides along the curve y=f(x) y = f ( x ) . Also assume that there is a damping force acting in the direction opposite to the velocity and proportional to the velocity, with proportionality constant β\beta . The differential equation that describes the horizontal position of the bead is


A) md2xdt2=mgf(x) /(1[f(x) ]2) βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 - \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
B) md2xdt2=mgf(x) /(1[f(x) ]2) +βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 - \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) + \beta \frac { d x } { d t }
C) md2xdt2=mgf(x) /(1+[f(x) ]2) βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = - m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
D) md2xdt2=mgf(x) /(1+[f(x) ]2) βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) - \beta \frac { d x } { d t }
E) md2xdt2=mgf(x) /(1+[f(x) ]2) +βdxdtm \frac { d ^ { 2 } x } { d t ^ { 2 } } = m g f ^ { \prime } ( x ) / \left( 1 + \left[ f ^ { \prime } ( x ) \right] ^ { 2 } \right) + \beta \frac { d x } { d t }

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents