Question 31
Multiple Choice
A uniform beam of length L has a concentrated load, w 0 w _ { 0 } w 0 , at x = L / 2 x = L / 2 x = L /2 . It is embedded at the left end and free at the right end. The correct initial value problem for the vertical deflection, y ( x ) y ( x ) y ( x ) , at a distance x from the embedded end is
A) E L y ′ ′ ′ ′ = w 0 δ ( x − L / 2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′ ′ ( L ) = 0 , y ′ ′ ′ ( L ) = 0 E L y ^ { \prime \prime \prime \prime } = w _ { 0 } \delta ( x - L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0 E L y ′′′′ = w 0 δ ( x − L /2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′′ ( L ) = 0 , y ′′′ ( L ) = 0 B) y ′ ′ ′ ′ = E I w 0 δ ( x − L / 2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′ ′ ( L ) = 0 , y ′ ′ ′ ( L ) = 0 y ^ { \prime \prime \prime \prime } = E I w _ { 0 } \delta ( x - L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0 y ′′′′ = E I w 0 δ ( x − L /2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′′ ( L ) = 0 , y ′′′ ( L ) = 0 C) E L y ′ ′ = w 0 δ ( x − L / 2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′ ′ ( L ) = 0 , y ′ ′ ′ ( L ) = 0 E L y ^ { \prime \prime } = w _ { 0 } \delta ( x - L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0 E L y ′′ = w 0 δ ( x − L /2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′′ ( L ) = 0 , y ′′′ ( L ) = 0 D) y ′ ′ = E I w 0 δ ( x − L / 2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′ ′ ( L ) = 0 , y ′ ′ ′ ( L ) = 0 y ^ { \prime \prime } = E I w _ { 0 } \delta ( x - L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0 y ′′ = E I w 0 δ ( x − L /2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′′ ( L ) = 0 , y ′′′ ( L ) = 0 E) E L y ′ ′ ′ ′ = w 0 δ ( x + L / 2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′ ′ ( L ) = 0 , y ′ ′ ′ ( L ) = 0 E L y ^ { \prime \prime \prime \prime } = w _ { 0 } \delta ( x + L / 2 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ^ { \prime \prime } ( L ) = 0 , y ^ { \prime \prime \prime } ( L ) = 0 E L y ′′′′ = w 0 δ ( x + L /2 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′′ ( L ) = 0 , y ′′′ ( L ) = 0
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge
Access For Free