Solved

The Boundary Value Problem Td2ydx2+ρω2=0,y(0)=0,y(L)=0T \frac { d ^ { 2 } y } { d x ^ { 2 } } + \rho \omega ^ { 2 } = 0 , y ( 0 ) = 0 , y ( L ) = 0

Question 21

Multiple Choice

The boundary value problem Td2ydx2+ρω2=0,y(0) =0,y(L) =0T \frac { d ^ { 2 } y } { d x ^ { 2 } } + \rho \omega ^ { 2 } = 0 , y ( 0 ) = 0 , y ( L ) = 0 is a model of the shape of a rotating string. Suppose TT and ρ\rho are constants. The critical angular rotation speed ω=ωn\omega = \omega _ { n } , for which there exist non-trivial solutions are


A) ωn=(T/ρ) (nπL) 2\omega _ { n } = ( T / \rho ) \left( \frac { n \pi } { L } \right) ^ { 2 }
B) ωn=T/ρnπL\omega _ { n } = \sqrt { T / \rho } \frac { n \pi } { L }
C) ωn=T/ρnπ2L\omega _ { n } = \sqrt { T / \rho } \frac { n \pi } { 2 L }
D) ωn=(T/ρ) (nπ2L) 2\omega _ { n } = ( T / \rho ) \left( \frac { n \pi } { 2 L } \right) ^ { 2 }
E) ωn=ρ/TnπL\omega _ { n } = \sqrt { \rho / T } \frac { n \pi } { L }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents