Solved

Let an\sum a _ { n } And bn\sum b _ { n }

Question 263

Essay

Let an\sum a _ { n } and bn\sum b _ { n } be two series. Determine whether each of the following statements is true or false. Justify your answer.
(a) If an\sum a _ { n } converges, then an0a _ { n } \rightarrow 0 .
(b) If an0a _ { n } \rightarrow 0 , then an\sum a _ { n } converges.
(c) If an\sum a _ { n } converges, and bn\sum b _ { n } diverges, then (an+bn)\sum \left( a _ { n } + b _ { n } \right) diverges.
(d) If an\sum a _ { n } diverges, and bn\sum b _ { n } diverges, then (an+bn)\sum \left( a _ { n } + b _ { n } \right) diverges.
(e) If an\sum a _ { n } converges, and limnbn=0\lim _ { n \rightarrow \infty } b _ { n } = 0 then (an+bn)\sum \left( a _ { n } + b _ { n } \right) converges.

Correct Answer:

verifed

Verified

(a) True
(b) False. For example, blured image , but ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents