Solved

Consider a One-Factor HJM Model on a Binomial Model with Time

Question 8

Multiple Choice

Consider a one-factor HJM model on a binomial model with time steps of one year and a probability of an up shift of qq . Each jj -th forward rate has constant volatility σ(j) \sigma ( j ) . For each forward period of one year what is the risk-neutral drift term in the nn -th period equal to?


A) α(n) =ln[qexp(j=1nσ(j) ) +(1q) exp(j=1nσ(j) ) ]j=1n1α(j) \alpha ( n ) = \ln \left[ q \exp \left( \sum _ { j = 1 } ^ { n } \sigma ( j ) \right) + ( 1 - q ) \exp \left( - \sum _ { j = 1 } ^ { n } \sigma ( j ) \right) \right] - \sum _ { j = 1 } ^ { n - 1 } \alpha ( j )
B) α(n) =ln[qexp(σ(n) ) +(1q) exp(σ(n) ) ]\alpha ( n ) = \ln [ q \exp ( \sigma ( n ) ) + ( 1 - q ) \exp ( - \sigma ( n ) ) ]
C) α(n) =exp[qln(j=1nσ(j) ) +(1q) ln(j=1nσ(j) ) ]j=1n1α(j) \alpha ( n ) = \exp \left[ q \ln \left( \sum _ { j = 1 } ^ { n } \sigma ( j ) \right) + ( 1 - q ) \ln \left( - \sum _ { j = 1 } ^ { n } \sigma ( j ) \right) \right] - \sum _ { j = 1 } ^ { n - 1 } \alpha ( j )
D) α(n) =exp[qln(σ(n) ) +(1q) ln(σ(n) ) ]\alpha ( n ) = \exp [ q \ln ( \sigma ( n ) ) + ( 1 - q ) \ln ( - \sigma ( n ) ) ]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents