Solved

Two Traveling Sinusoidal Waves Interfere to Produce a Wave with the Mathematical

Question 57

Multiple Choice

Two traveling sinusoidal waves interfere to produce a wave with the mathematical form  Two traveling sinusoidal waves interfere to produce a wave with the mathematical form   If the value of  \phi  is appropriately chosen, the two waves might be: A)  y<sub>1</sub>(x,t)  = (y<sub>m</sub>/3)  sin (kx +   \omega  t)  and y<sub>2</sub>(x,t)  = (y<sub>m</sub>/3)  sin (kx +   \omega  t +  \phi  )  B)  y<sub>1</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx -   \omega  t)  and y<sub>2</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx -   \omega  t +  \phi  )  C)  y<sub>1</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx -   \omega  t)  and y<sub>2</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx +  \omega  t +  \phi  )  D)  y<sub>1</sub>(x,t)  = 0.7y<sub>m</sub> sin [(kx/2)  - (  \omega  t/2) ] and y<sub>2</sub>(x,t)  = 0.7y<sub>m</sub> sin [(kx/2)  - (  \omega  t/2)  +  \phi  ] E)  y<sub>1</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx +   \omega  t)  and y<sub>2</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx +   \omega  t +  \phi  )  If the value of ϕ\phi is appropriately chosen, the two waves might be:


A) y1(x,t) = (ym/3) sin (kx + ω \omega t) and y2(x,t) = (ym/3) sin (kx + ω \omega t + ϕ\phi )
B) y1(x,t) = 0.7ym sin (kx - ω \omega t) and y2(x,t) = 0.7ym sin (kx - ω \omega t + ϕ\phi )
C) y1(x,t) = 0.7ym sin (kx - ω \omega t) and y2(x,t) = 0.7ym sin (kx + ω \omega t + ϕ\phi )
D) y1(x,t) = 0.7ym sin [(kx/2) - ( ω \omega t/2) ] and y2(x,t) = 0.7ym sin [(kx/2) - ( ω \omega t/2) + ϕ\phi ]
E) y1(x,t) = 0.7ym sin (kx + ω \omega t) and y2(x,t) = 0.7ym sin (kx + ω \omega t + ϕ\phi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents