Solved

LINDO Output Is Given for the Following Linear Programming Problem 5X1+8X2+5X3>=605 \mathrm { X } 1 + 8 \mathrm { X } 2 + 5 \mathrm { X } 3 > = 60

Question 51

Essay

LINDO output is given for the following linear programming problem.
MIN 12 X1 + 10 X2 + 9 X3
SUBJECT TO
END
LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1)80.000000
2) 5X1+8X2+5X3>=605 \mathrm { X } 1 + 8 \mathrm { X } 2 + 5 \mathrm { X } 3 > = 60
3) 8X1+10X2+5X3>=808 X 1 + 10 X 2 + 5 X 3 > = 80  VARIABLE  VALUE  REDUCED COST X1.0000004.000000X28.000000.000000X3.0000004.000000\begin{array} { l r c } \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\\mathrm { X } 1 & .000000 & 4.000000 \\\mathrm { X } 2 & 8.000000 & .000000 \\\mathrm { X } 3 & .000000 & 4.000000\end{array} NO.ITERATIONS= 1
RANGES IN WHICH THE BASIS IS UNCHANGED:
 ROW  SLACK OR SURPLUS  DUAL PRICE  2) 4.000000.000000 3) 0000001.000000\begin{array} { l c c } \text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE } \\\text { 2) } & 4.000000 & .000000 \\\text { 3) } & 000000 & - 1.000000\end{array}  LINDO output is given for the following linear programming problem. MIN 12 X1 + 10 X2 + 9 X3 SUBJECT TO END LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE 1)80.000000  2)  5 \mathrm { X } 1 + 8 \mathrm { X } 2 + 5 \mathrm { X } 3 > = 60  3)  8 X 1 + 10 X 2 + 5 X 3 > = 80   \begin{array} { l r c }  \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\ \mathrm { X } 1 & .000000 & 4.000000 \\ \mathrm { X } 2 & 8.000000 & .000000 \\ \mathrm { X } 3 & .000000 & 4.000000 \end{array}  NO.ITERATIONS= 1 RANGES IN WHICH THE BASIS IS UNCHANGED:   \begin{array} { l c c }  \text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE } \\ \text { 2) } & 4.000000 & .000000 \\ \text { 3) } & 000000 & - 1.000000 \end{array}       a.What is the solution to the problem? b.Which constraints are binding? c.Interpret the reduced cost for x<sub>1</sub>. d.Interpret the dual price for constraint 2. e.What would happen if the cost of x<sub>1</sub> dropped to 10 and the cost of x<sub>2</sub> increased to 12?  LINDO output is given for the following linear programming problem. MIN 12 X1 + 10 X2 + 9 X3 SUBJECT TO END LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE 1)80.000000  2)  5 \mathrm { X } 1 + 8 \mathrm { X } 2 + 5 \mathrm { X } 3 > = 60  3)  8 X 1 + 10 X 2 + 5 X 3 > = 80   \begin{array} { l r c }  \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\ \mathrm { X } 1 & .000000 & 4.000000 \\ \mathrm { X } 2 & 8.000000 & .000000 \\ \mathrm { X } 3 & .000000 & 4.000000 \end{array}  NO.ITERATIONS= 1 RANGES IN WHICH THE BASIS IS UNCHANGED:   \begin{array} { l c c }  \text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE } \\ \text { 2) } & 4.000000 & .000000 \\ \text { 3) } & 000000 & - 1.000000 \end{array}       a.What is the solution to the problem? b.Which constraints are binding? c.Interpret the reduced cost for x<sub>1</sub>. d.Interpret the dual price for constraint 2. e.What would happen if the cost of x<sub>1</sub> dropped to 10 and the cost of x<sub>2</sub> increased to 12?
a.What is the solution to the problem?
b.Which constraints are binding?
c.Interpret the reduced cost for x1.
d.Interpret the dual price for constraint 2.
e.What would happen if the cost of x1 dropped to 10 and the cost of x2 increased to 12?

Correct Answer:

verifed

Verified

a. blured image
b. Constraint 2 is binding.
c. c1 wo...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents