Solved

Suppose That Curl F(1,2,1)=3i2j+5k\vec { F } ( 1,2,1 ) = 3 \vec { i } - 2 \vec { j } + - 5 \vec { k }

Question 51

Essay

Suppose that curl F(1,2,1)=3i2j+5k\vec { F } ( 1,2,1 ) = 3 \vec { i } - 2 \vec { j } + - 5 \vec { k } curl F(0,2,1)=6i+2j+5k\vec { F } ( 0,2,1 ) = 6 \vec { i } + 2 \vec { j } + 5 \vec { k } and curl F(1,3,1)=3i+2j+10k { \vec { F } } ( 1,3 , - 1 ) = - 3 \vec { i } + 2 \vec { j } + 10 \vec { k } Estimate the following line integrals.
(a) C1Fdr\int _ { C _ { 1 } } \vec { F } \cdot d \vec { r } where C1 is given by r(t)=i+(3+0.1cost)j+(0.1sint1)k,0t2π\vec { r } ( t ) = \vec { i } + ( 3 + 0.1 \cos t ) \vec { j } + ( 0.1 \sin t - 1 ) \vec { k } , \quad 0 \leq t \leq 2 \pi (b) c2Fdr\int _ { c _ { 2 } } \vec { F } \cdot d \vec { r } where C2 is given by r(t)=0.1sinti+2j+(1+0.1cost)k,0t2π\vec { r } ( t ) = 0.1 \sin t \vec { i } + 2 \vec { j } + ( 1 + 0.1 \cos t ) \vec { k } , 0 \leq t \leq 2 \pi (c) C3Fdr\int _ { C _ { 3 } } \vec { F } \cdot d \vec { r } where C3 is given by r(t)=(1+0.1cost)i+(2+0.1sint)j+k,0t2π\vec { r } ( t ) = ( 1 + 0.1 \cos t ) \vec { i } + ( 2 + 0.1 \sin t ) \vec { j } + \vec { k } , \quad 0 \leq t \leq 2 \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents