Solved

Let F=4z3yi+(4x+4z3x)j+(x2+12z2xy)k\vec { F } = 4 z ^ { 3 } y \vec { i } + \left( 4 x + 4 z ^ { 3 } x \right) \vec { j } + \left( x ^ { 2 } + 12 z ^ { 2 } x y \right) \vec { k }

Question 43

Essay

Let F=4z3yi+(4x+4z3x)j+(x2+12z2xy)k\vec { F } = 4 z ^ { 3 } y \vec { i } + \left( 4 x + 4 z ^ { 3 } x \right) \vec { j } + \left( x ^ { 2 } + 12 z ^ { 2 } x y \right) \vec { k } (a)Evaluate the line integral Q^F×dr\hat { \mathrm { Q } } { \vec { F } \times d \vec { r } } , where C is the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 on the xy-plane, oriented in a counter-clockwise direction when viewed from above.
(b)Without any computation, explain why the answer in part (a)is also equal to the flux integral Q1˙curlF×dA\dot {\mathrm { Q } _ { 1 } }\operatorname { curl } \vec { F } \times \vec { d { A } } where S1 is lower hemisphere x2+y2+z2=1,z£0x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 , z £ 0 oriented inward.

Correct Answer:

verifed

Verified

(a)The orientation of C is determined fo...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents