Solved

Solve the Problem I3=[100010001]\mathrm { I } _ { 3 } = \left[ \begin{array} { l l l } 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]

Question 70

Multiple Choice

Solve the problem.
-The columns of I3=[100010001]\mathrm { I } _ { 3 } = \left[ \begin{array} { l l l } 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] are e1=[100],e2=[010],e3=[001]\mathbf { e } _ { 1 } = \left[ \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right] , \mathbf { e } _ { 2 } = \left[ \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right] , \mathbf { e } _ { 3 } = \left[ \begin{array} { l } 0 \\ 0 \\ 1 \end{array} \right] .
Suppose that T\mathrm { T } is a linear transformation from R3R ^ { 3 } into R2\mathcal { R } ^ { 2 } such that
T(e1) =[32],T(e2) =[50]\mathrm { T } \left( \mathbf { e } _ { 1 } \right) = \left[ \begin{array} { r } 3 \\ - 2 \end{array} \right] , \mathrm { T } \left( \mathbf { e } _ { 2 } \right) = \left[ \begin{array} { l } 5 \\ 0 \end{array} \right] , and T(e3) =[51]\mathrm { T } \left( \mathbf { e } _ { 3 } \right) = \left[ \begin{array} { r } - 5 \\ 1 \end{array} \right]
Find a formula for the image of an arbitrary x=[x1x2x3]x = \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] in R3R ^ { 3 } .


A)
T[x1x2x3]=[3x12x25x1]T \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] = \left[ \begin{array} { l } 3 x _ { 1 } - 2 x _ { 2 } \\ 5 x _ { 1 } \end{array} \right]
B)
T[x1x2x3]=[3x12x25x15x2+x3]T \left[ \begin{array} { l } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \end{array} \right] = \left[ \begin{array} { l } 3 x _ { 1 } - 2 x _ { 2 } \\ 5 x _ { 1 } \\ 5 x _ { 2 } + x _ { 3 } \end{array} \right]
C)
T[x1x2x3]=[3x1+5x25x35x12x1+x3]T \left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 }\end{array} \right] = \left[ \begin{array} { l } 3 x _ { 1 } + 5 x _ { 2 } - 5 x _ { 3 } \\5 x _ { 1 } \\- 2 x _ { 1 } + x _ { 3 }\end{array} \right]
D)
T[x1x2x3]=[3x1+5x25x32x1+x3]T \left[ \begin{array} { l } x _ { 1 } \\x _ { 2 } \\x _ { 3 }\end{array} \right] = \left[ \begin{array} { l l } 3 x _ { 1 } + 5 x _ { 2 } - 5 x _ { 3 } \\- 2 x _ { 1 } + x _ { 3 }\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents