Solved

Find the Standard Matrix of the Linear Transformation T R2>R2\mathfrak { R } ^ { 2 } \rightarrow > \mathfrak { R } ^ { 2 }

Question 71

Multiple Choice

Find the standard matrix of the linear transformation T.
-T: R2>R2\mathfrak { R } ^ { 2 } \rightarrow > \mathfrak { R } ^ { 2 } rotates points (about the origin) through 74π\frac { 7 } { 4 } \pi radians (with counterclockwise rotation for a positive angle) .


A)
[33333333]\left[\begin{array}{c}\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \\-\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3}\end{array}\right]

B) [22222222]\left[\begin{array}{c}-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \\-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\end{array}\right]
C)
 Find the standard matrix of the linear transformation T. -T:  \mathfrak { R } ^ { 2 } \rightarrow > \mathfrak { R } ^ { 2 }  rotates points (about the origin)  through  \frac { 7 } { 4 } \pi  radians (with counterclockwise rotation for a positive angle) . A)   \left[\begin{array}{c} \frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \end{array}\right]   B)   \left[\begin{array}{c} -\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} \end{array}\right]  C)     D)    \left[ \begin{array} { r r } 1 & 1 \\ - 1 & 1 \end{array} \right]

D)
[1111]\left[ \begin{array} { r r } 1 & 1 \\ - 1 & 1 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents