Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Mathematics
Study Set
College Algebra
Quiz 6: Matrices and Determinants and Applications
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Question 21
Multiple Choice
Solve the system using Gaussian elimination or Gauss-Jordan elimination. -
2
(
x
ā
2
z
)
=
3
y
+
x
+
30
x
=
2
y
ā
2
z
ā
3
ā
5
x
+
2
y
+
6
z
=
ā
41
\begin{array} { l } 2 ( x - 2 z ) = 3 y + x + 30 \\x = 2 y - 2 z - 3 \\- 5 x + 2 y + 6 z = - 41\end{array}
2
(
x
ā
2
z
)
=
3
y
+
x
+
30
x
=
2
y
ā
2
z
ā
3
ā
5
x
+
2
y
+
6
z
=
ā
41
ā
Question 22
Multiple Choice
Perform the elementary row operation on the given matrix. -
R
2
ā
R
3
[
ā
8
2
ā
9
ā
4
ā
3
7
ā
6
6
5
0
3
6
]
\begin{array} { l } R _ { 2 } \Leftrightarrow R _ { 3 } \\{ \left[ \begin{array} { r r r | r } - 8 & 2 & - 9 & - 4 \\- 3 & 7 & - 6 & 6 \\5 & 0 & 3 & 6\end{array} \right] }\end{array}
R
2
ā
ā
R
3
ā
ā
ā
8
ā
3
5
ā
2
7
0
ā
ā
9
ā
6
3
ā
ā
4
6
6
ā
ā
ā
Question 23
Multiple Choice
Perform the indicated row operations, then write the new matrix. -
[
1
1
1
ā
1
ā
2
3
5
3
3
2
4
1
]
2
R
1
+
R
2
ā
R
2
,
ā
3
R
1
+
R
3
ā
R
3
\left[ \begin{array} { r r r | r } 1 & 1 & 1 & - 1 \\- 2 & 3 & 5 & 3 \\3 & 2 & 4 & 1\end{array} \right] \begin{array} { c } 2 R 1 + R 2 \rightarrow R 2 , \\- 3 R 1 + R 3 \rightarrow R 3\end{array}
ā
1
ā
2
3
ā
1
3
2
ā
1
5
4
ā
ā
1
3
1
ā
ā
2
R
1
+
R
2
ā
R
2
,
ā
3
R
1
+
R
3
ā
R
3
ā
Question 24
Multiple Choice
Determine if the matrix is in row-echelon form. -
[
1
ā
6
ā
8
ā
7
0
1
0
8
0
0
2
3
]
\left[ \begin{array} { r r r | r } 1 & - 6 & - 8 & - 7 \\0 & 1 & 0 & 8 \\0 & 0 & 2 & 3\end{array} \right]
ā
1
0
0
ā
ā
6
1
0
ā
ā
8
0
2
ā
ā
7
8
3
ā
ā
Question 25
True/False
Write the word or phrase that best completes each statement or answers the question. Provide the missing information. -True or false? A system of linear equations in three variables may have exactly two solutions.
Question 26
Multiple Choice
Find the partial fraction decomposition for the given rational expression. Use the technique of Gaussian elimination to find A, B, and C. -
ā
3
x
2
+
7
x
ā
10
(
x
+
2
)
(
x
ā
1
)
2
=
A
x
+
2
+
B
x
ā
1
ā
C
(
x
ā
1
)
2
\frac { - 3 x ^ { 2 } + 7 x - 10 } { ( x + 2 ) ( x - 1 ) ^ { 2 } } = \frac { A } { x + 2 } + \frac { B } { x - 1 } - \frac { C } { ( x - 1 ) ^ { 2 } }
(
x
+
2
)
(
x
ā
1
)
2
ā
3
x
2
+
7
x
ā
10
ā
=
x
+
2
A
ā
+
x
ā
1
B
ā
ā
(
x
ā
1
)
2
C
ā
Question 27
Multiple Choice
Solve the system using Gaussian elimination or Gauss-Jordan elimination. -
ā
5
y
=
24
ā
3
x
2
(
x
ā
4
y
)
=
49
ā
y
\begin{array} { l } - 5 y = 24 - 3 x \\2 ( x - 4 y ) = 49 - y\end{array}
ā
5
y
=
24
ā
3
x
2
(
x
ā
4
y
)
=
49
ā
y
ā
Question 28
Multiple Choice
Solve the system using Gaussian elimination or Gauss-Jordan elimination. -
5
x
+
9
z
=
ā
16
+
6
y
8
x
=
7
y
+
7
z
ā
141
8
z
=
ā
2
y
ā
2
x
+
42
\begin{array} { l } 5 x + 9 z = - 16 + 6 y \\8 x = 7 y + 7 z - 141 \\8 z = - 2 y - 2 x + 42\end{array}
5
x
+
9
z
=
ā
16
+
6
y
8
x
=
7
y
+
7
z
ā
141
8
z
=
ā
2
y
ā
2
x
+
42
ā
Question 29
Multiple Choice
Use a calculator to approximate the reduced row-echelon form of the augmented matrix representing the given system. Give the solution set where x, y, and z are rounded to 2 decimal places. -
0.52
x
ā
3.79
y
ā
4.67
z
=
9.15
0.03
x
+
0.06
y
+
0.13
z
=
0.53
0.974
x
+
0.813
y
+
0.419
z
=
0.189
\begin{aligned}0.52 x - 3.79 y - 4.67 z & = 9.15 \\0.03 x + 0.06 y + 0.13 z & = 0.53 \\0.974 x + 0.813 y + 0.419 z & = 0.189\end{aligned}
0.52
x
ā
3.79
y
ā
4.67
z
0.03
x
+
0.06
y
+
0.13
z
0.974
x
+
0.813
y
+
0.419
z
ā
=
9.15
=
0.53
=
0.189
ā
Question 30
Multiple Choice
Perform the elementary row operation on the given matrix. -
ā
5
R
1
+
R
3
ā
R
3
- 5 R _ { 1 } + R _ { 3 } \rightarrow R _ { 3 }
ā
5
R
1
ā
+
R
3
ā
ā
R
3
ā
[
1
16
5
3
7
18
5
8
5
12
9
13
]
\left[ \begin{array} { r r r | r } 1 & 16 & 5 & 3 \\ 7 & 18 & 5 & 8 \\ 5 & 12 & 9 & 13 \end{array} \right]
ā
1
7
5
ā
16
18
12
ā
5
5
9
ā
3
8
13
ā
ā
Question 31
Multiple Choice
Determine if the matrix is in row-echelon form. -
[
1
0
0
0
2
0
1
0
0
4
0
0
ā
1
0
9
0
0
0
1
ā
6
]
\left[ \begin{array} { r r r r | r } 1 & 0 & 0 & 0 & 2 \\0 & 1 & 0 & 0 & 4 \\0 & 0 & - 1 & 0 & 9 \\0 & 0 & 0 & 1 & - 6\end{array} \right]
ā
1
0
0
0
ā
0
1
0
0
ā
0
0
ā
1
0
ā
0
0
0
1
ā
2
4
9
ā
6
ā
ā
Question 32
Multiple Choice
Solve the problem. -Danielle stayed in three different cities (Washington, D.C., Atlanta, Georgia, and Dallas, Texas) for a total of 22 nights. She spent twice as many nights in Dallas as she did in Washington. The total Cost for 22 nights (excluding tax) was $3,100. Determine the number of nights that she spent in each city.
Ā CityĀ
Ā CostĀ perĀ NightĀ
Ā WashingtonĀ
$
100
Ā AtlantaĀ
$
175
Ā DallasĀ
$
150
\begin{array} { l | c } { \text { City } } & \text { Cost per Night } \\\hline \text { Washington } & \$ 100 \\\hline \text { Atlanta } & \$ 175 \\\hline \text { Dallas } & \$ 150\end{array}
Ā CityĀ
Ā WashingtonĀ
Ā AtlantaĀ
Ā DallasĀ
ā
Ā CostĀ perĀ NightĀ
$100
$175
$150
ā
ā
Question 33
Multiple Choice
Solve the system using Gaussian elimination or Gauss-Jordan elimination. -
5
x
ā
7
y
=
ā
3
ā
6
x
+
5
y
=
7
\begin{aligned}5 x - 7 y & = - 3 \\- 6 x + 5 y & = 7\end{aligned}
5
x
ā
7
y
ā
6
x
+
5
y
ā
=
ā
3
=
7
ā
Question 34
True/False
Write the word or phrase that best completes each statement or answers the question. Provide the missing information. -True or false? A system of linear equations in three variables may have exactly one solution.
Question 35
True/False
Write the word or phrase that best completes each statement or answers the question. Provide the missing information. -True or false? A system of linear equations in three variables may have no solution.