Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Statistics
Study Set
Statistics Study Set 1
Quiz 12: Multiple Regression and Model Building
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Question 41
Multiple Choice
We decide to conduct a multiple regression analysis to predict the attendance at a major league baseball game. We use the size of the stadium as a quantitative independent variable and the type Of game as a qualitative variable (with two levels - day game or night game) . We hypothesize the Following model:
E
(
y
)
=
β
0
+
β
1
x
1
+
β
2
x
2
+
β
3
x
3
\mathrm { E } ( \mathrm { y } ) = \beta _ { 0 } + \beta _ { 1 } \mathrm { x } _ { 1 } + \beta _ { 2 } \mathrm { x } _ { 2 } + \beta _ { 3 } \mathrm { x } _ { 3 }
E
(
y
)
=
β
0
+
β
1
x
1
+
β
2
x
2
+
β
3
x
3
Where
x
1
=
\mathrm { x } _ { 1 } =
x
1
=
size of the stadium
x
2
=
1
x _ { 2 } = 1
x
2
=
1
if a day game, 0 if a night game A plot of the
y
−
x
y - x
y
−
x
relationship would show:
Question 42
Essay
Consider the partial printout below.
Coefficients
Standard Error
t
Stat
P-value
Lower 95%
Upper 95%
Intercept
−
63.14873931
25.09115112
−
2.516773304
0.045484943
−
124.5446192
−
1.752859365
X1
14.72507864
8.113581741
1.814867849
0.119466699
−
5.128155197
34.57831248
X2
12.48784546
4.686063743
2.664890224
0.037279879
1.021452165
23.95423875
X1X2
−
1.886935135
1.344999834
−
1.402925924
0.210210141
−
5.178033575
1.404163305
Is there evidence (at
α
=
.
05
) that
x
1
and
x
2
interact? Explain.
\begin{array}{l}\begin{array} { l c l l l l l } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & - 63.14873931 & 25.09115112 & - 2.516773304 & 0.045484943 & - 124.5446192 & - 1.752859365 \\\text { X1 } & 14.72507864 & 8.113581741 & 1.814867849 & 0.119466699 & - 5.128155197 & 34.57831248 \\\text { X2 } & 12.48784546 & 4.686063743 & 2.664890224 & 0.037279879 & 1.021452165 & 23.95423875 \\\text { X1X2 } & - 1.886935135 & 1.344999834 & - 1.402925924 & 0.210210141 & - 5.178033575 & 1.404163305 \\\hline\end{array}\\\text { Is there evidence (at } \alpha = .05 \text { ) that } x _ { 1 } \text { and } x _ { 2 } \text { interact? Explain. }\end{array}
Intercept
X1
X2
X1X2
Coefficients
−
63.14873931
14.72507864
12.48784546
−
1.886935135
Standard Error
25.09115112
8.113581741
4.686063743
1.344999834
t
Stat
−
2.516773304
1.814867849
2.664890224
−
1.402925924
P-value
0.045484943
0.119466699
0.037279879
0.210210141
Lower 95%
−
124.5446192
−
5.128155197
1.021452165
−
5.178033575
Upper 95%
−
1.752859365
34.57831248
23.95423875
1.404163305
Is there evidence (at
α
=
.05
) that
x
1
and
x
2
interact? Explain.
Question 43
Multiple Choice
A study of the top MBA programs attempted to predict the average starting salary (in $1000ʹs) of graduates of the program based on the amount of tuition (in $1000ʹs) charged by the program and The average GMAT score of the programʹs students. The results of a regression analysis based on a Sample of 75 MBA programs is shown below: Least Squares Linear Regression of Salary
Predictor
\text { Predictor }
Predictor
The model was then used to create
95
%
95 \%
95%
confidence and prediction intervals for
y
y
y
and for
E
(
Y
)
E ( Y )
E
(
Y
)
when the tuition charged by the MBA program was
$
75
,
000
\$ 75,000
$75
,
000
and the GMAT score was 675 . The results are shown here:
95
%
95 \%
95%
confidence interval for
E
(
Y
)
:
(
$
126
,
610
,
$
136
,
640
)
\mathrm { E } ( \mathrm { Y } ) : ( \$ 126,610 , \$ 136,640 )
E
(
Y
)
:
(
$126
,
610
,
$136
,
640
)
95
%
95 \%
95%
prediction interval for
Y
:
(
$
90
,
113
,
$
173
,
160
)
\mathrm { Y } : ( \$ 90,113 , \$ 173,160 )
Y
:
(
$90
,
113
,
$173
,
160
)
Which of the following interpretations is correct if you want to use the model to estimate
E
(
Y
)
E ( Y )
E
(
Y
)
for all MBA programs?
Question 44
True/False
In an interaction model, the relationship between
E
(
y
)
E ( y )
E
(
y
)
and
x
1
x _ { 1 }
x
1
is linear for each fixed value of
x
2
x _ { 2 }
x
2
but the slopes of the lines relating
E
(
y
)
E ( y )
E
(
y
)
and
x
1
x _ { 1 }
x
1
may be different for two different fixed values of
x
2
x _ { 2 }
x
2
.
Question 45
True/False
In the quadratic model
E
(
y
)
=
β
0
+
β
1
x
+
β
2
x
2
E ( y ) = \beta _ { 0 } + \beta _ { 1 } x + \beta _ { 2 } x ^ { 2 }
E
(
y
)
=
β
0
+
β
1
x
+
β
2
x
2
, a negative value of
β
1
\beta _ { 1 }
β
1
indicates downward concavity.
Question 46
True/False
One of three surfaces is produced by a complete second-order model with two quantitative independent variables: a paraboloid that opens upward, a paraboloid that opens downward, or a saddle-shaped surface.