Solved

Solve the Problem D\mathrm { D } In Space Maximizes the Value of the Integral

Question 225

Multiple Choice

Solve the problem.
-What domain D\mathrm { D } in space maximizes the value of the integral
(x281+y236+z241) dV?\iiint \left( \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 36 } + \frac { z ^ { 2 } } { 4 } - 1 \right) d V ?


A) D=D = the boundary of the ellipsoid x281+y236+z24=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 36 } + \frac { z ^ { 2 } } { 4 } = 1 .
B) D=D = the boundary and interior of the ellipsoid x281+y236+z24=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 36 } + \frac { z ^ { 2 } } { 4 } = 1 .
C) D=R3\mathrm { D } = \mathcal { R } ^ { 3 }
D) No such minimum domain exists.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents