Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Statistics
Study Set
Basic Business Statistics
Quiz 15: Multiple Regression Model Building
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 21
True/False
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. If she chooses to use a level of significance of 0.05, she would decide that there is a significant curvilinear relationship.
Question 22
True/False
Collinearity will result in excessively low standard errors of the parameter estimates reported in the regression output.
Question 23
True/False
One of the consequences of collinearity in multiple regression is biased estimates on the slope coefficients.
Question 24
Short Answer
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, suppose the chemist decides to use a t test to determine if there is a significant difference between a linear model and a curvilinear model that includes a linear term. The p-value of the test statistic for the contribution of the curvilinear term is ________.
Question 25
Short Answer
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, suppose the chemist decides to use a t test to determine if the linear term is significant. The value of the test statistic is ________.
Question 26
Short Answer
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. The p-value of the test is ________.
Question 27
Short Answer
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, suppose the chemist decides to use an F test to determine if there is a significant curvilinear relationship between time and dose. The value of the test statistic is ________.
Question 28
Short Answer
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, the prediction of time to relief for a person receiving a dose of the drug 10 units above the mean dose (i.e., the prediction of Y for X = 10)is ________.
Question 29
Short Answer
In multiple regression, the ________ procedure permits variables to enter and leave the model at different stages of its development.
Question 30
True/False
The parameter estimates are biased when collinearity is present in a multiple regression equation.
Question 31
True/False
So that we can fit curves as well as lines by regression, we often use mathematical manipulations for converting one variable into a different form. These manipulations are called dummy variables.
Question 32
True/False
Collinearity is present if the dependent variable is linearly related to one of the explanatory variables.
Question 33
True/False
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, suppose the chemist decides to use a t test to determine if there is a significant difference between a linear model and a curvilinear model that includes a linear term. If she used a level of significance of 0.05, she would decide that the linear model is sufficient.
Question 34
True/False
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, suppose the chemist decides to use a t test to determine if the linear term is significant. Using a level of significance of 0.05, she would decide that the linear term is significant.
Question 35
True/False
Two simple regression models were used to predict a single dependent variable. Both models were highly significant, but when the two independent variables were placed in the same multiple regression model for the dependent variable, R² did not increase substantially and the parameter estimates for the model were not significantly different from 0. This is probably an example of collinearity.
Question 36
True/False
One of the consequences of collinearity in multiple regression is inflated standard errors in some or all of the estimated slope coefficients.
Question 37
Short Answer
TABLE 15-3 A chemist employed by a pharmaceutical firm has developed a muscle relaxant. She took a sample of 14 people suffering from extreme muscle constriction. She gave each a vial containing a dose (X) of the drug and recorded the time to relief (Y) measured in seconds for each. She fit a "centered" curvilinear model to this data. The results obtained by Microsoft Excel follow, where the dose (X) given has been "centered." SUMMARY OUTPUT Regression Statistics
Multiple R
0.747
R Square
0.558
Adjusted R Square
0.478
Standard Error
863.1
Observations
14
\begin{array} { l r } \text { Multiple R } & 0.747 \\ \text { R Square } & 0.558 \\ \text { Adjusted R Square } & 0.478 \\ \text { Standard Error } & 863.1 \\ \text { Observations } & 14 \end{array}
Multiple R
R Square
Adjusted R Square
Standard Error
Observations
0.747
0.558
0.478
863.1
14
ANOVA
d
f
SS
MS
F
Signif F
Regression
2
10344797
5172399
6.94
0.0110
Residual
11
8193929
744903
Total
13
18538726
\begin{array} { l r r r r r } & d f & \text { SS } & \text { MS } & F & \text { Signif F } \\ \text { Regression } & 2 & 10344797 & 5172399 & 6.94 & 0.0110 \\ \text { Residual } & 11 & 8193929 & 744903 & & \\ \text { Total } & 13 & 18538726 & & & \end{array}
Regression
Residual
Total
df
2
11
13
SS
10344797
8193929
18538726
MS
5172399
744903
F
6.94
Signif F
0.0110
Coeff
StdFrror
t
Stat
p
-value
Intercept
1283.0
352.0
3.65
0.0040
CenDose
25.228
8.631
2.92
0.0140
CenDoseSa
0.8604
0.3722
2.31
0.0410
\begin{array} { l c c c c } & \text { Coeff } & \text { StdFrror } & t \text { Stat } & p \text {-value } \\ \text { Intercept } & 1283.0 & 352.0 & 3.65 & 0.0040 \\ \text { CenDose } & 25.228 & 8.631 & 2.92 & 0.0140 \\ \text { CenDoseSa } & 0.8604 & 0.3722 & 2.31 & 0.0410 \end{array}
Intercept
CenDose
CenDoseSa
Coeff
1283.0
25.228
0.8604
StdFrror
352.0
8.631
0.3722
t
Stat
3.65
2.92
2.31
p
-value
0.0040
0.0140
0.0410
-Referring to Table 15-3, suppose the chemist decides to use a t test to determine if the linear term is significant. The p-value of the test is ________.
Question 38
True/False
A high value of R² significantly above 0 in multiple regression accompanied by insignificant t-values on all parameter estimates very often indicates a high correlation between independent variables in the model.