Solved

The Smaller the Curvature in a Bend of a Road y=13x3(x and y are measured in miles) can safely go 25 miles per hour at y = \frac { 1 } { 3 } x ^ { 3 } ( x \text { and } y \text { are measured in miles) can safely go } 25 \text { miles per hour at }

Question 83

Multiple Choice

The smaller the curvature in a bend of a road, the faster a car can travel. Assume that the maximum speed around a turn is inversely proportional to the square root of the curvature. A car Moving on the path y=13x3(x and y are measured in miles)  can safely go 25 miles per hour at y = \frac { 1 } { 3 } x ^ { 3 } ( x \text { and } y \text { are measured in miles) can safely go } 25 \text { miles per hour at } (1,13) \left( 1 , \frac { 1 } { 3 } \right) . How fast can it go at (52,12524) \left( \frac { 5 } { 2 } , \frac { 125 } { 24 } \right) ? Round your answer to two decimal places.


A) 259.31mi/h259.31 \mathrm { mi } / \mathrm { h }
B) 149.71mi/h149.71 \mathrm { mi } / \mathrm { h }
C) 119.77mi/h119.77 \mathrm { mi } / \mathrm { h }
D) 75.30mi/h75.30 \mathrm { mi } / \mathrm { h }
E) 299.42mi/h299.42 \mathrm { mi } / \mathrm { h }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents