Solved

State the Dual Problem y1,y2\mathrm{y}_{1}, \mathrm{y}_{2} , And y3\mathrm{y}_{3} As the Variables y10,y20\mathrm{y}_{1} \geq 0, \mathrm{y}_{2} \geq 0

Question 138

Multiple Choice

State the dual problem. Use y1,y2\mathrm{y}_{1}, \mathrm{y}_{2} , and y3\mathrm{y}_{3} as the variables. Given: y10,y20\mathrm{y}_{1} \geq 0, \mathrm{y}_{2} \geq 0 , and y30\mathrm{y}_{3} \geq 0 .
-Minimize w=6x1+3x2\mathrm{w}=6 \mathrm{x}_{1}+3 \mathrm{x}_{2}
Subject to: 3x1+2x2243 x_{1}+2 x_{2} \geq 24
2x1+5x2382 x_{1}+5 x_{2} \geq 38
x10,x20\mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0


A) Maximize z=24y1+38y2z=24 y_{1}+38 y_{2}
Subject to: 3y1+2y263 \mathrm{y}_{1}+2 \mathrm{y}_{2} \geq 6
2y1+5y232 \mathrm{y}_{1}+5 \mathrm{y}_{2} \geq 3
B) Maximize z=38y1+24y2z=38 y 1+24 y 2
Subject to: 2y1+3y262 y_{1}+3 y_{2} \geq 6
5y1+2y235 y_{1}+2 y_{2} \geq 3
C) Maximize z=24y1+38y2z=24 y 1+38 y 2
Subject to: 3y1+2y263 \mathrm{y}_{1}+2 \mathrm{y}_{2} \leq 6
2y1+5y232 \mathrm{y}_{1}+5 \mathrm{y}_{2} \leq 3
D) Maximize z=38y1+24y2z=38 y_{1}+24 y 2
Subject to: 2y1+3y262 \mathrm{y}_{1}+3 \mathrm{y}_{2} \leq 6
5y1+2y235 \mathrm{y}_{1}+2 \mathrm{y}_{2} \leq 3

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents