Solved

State the Dual Problem y1,y2\mathrm{y}_{1}, \mathrm{y}_{2} , And y3\mathrm{y}_{3} As the Variables y10,y20\mathrm{y}_{1} \geq 0, \mathrm{y}_{2} \geq 0

Question 139

Multiple Choice

State the dual problem. Use y1,y2\mathrm{y}_{1}, \mathrm{y}_{2} , and y3\mathrm{y}_{3} as the variables. Given: y10,y20\mathrm{y}_{1} \geq 0, \mathrm{y}_{2} \geq 0 , and y30\mathrm{y}_{3} \geq 0 .
-Minimize w=2x1+3x2+x3\mathrm{w}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3}
Subject to: x1+3x2+2x334 x_{1}+3 x_{2} +2 x_{3}\geq 34
2x1+4x2+3x3592 x_{1}+4 x_{2} +3 x_{3}\geq 59
x10,x2,x30\mathrm{x}_{1} \geq 0, \mathrm{x}_{2} , \mathrm{x}_{3}\geq 0


A) Maximize z=59y1+34y2z=59 y 1+34 y 2
Subject to: 2y1+y222 \mathrm{y}_{1}+\mathrm{y}_{2} \leq 2
4y1+3y234 y_{1}+3 y_{2} \leq 3
3y1+2y213 y_{1}+2 y_{2} \leq 1
B) Maximize z=34y1+59y2z=34 y 1+59 y 2
Subject to: y1+2y22\mathrm{y}_{1}+2 \mathrm{y}_{2} \leq 2
3y1+4y233 y_{1}+4 y_{2} \geq 3
2y1+3y212 y_{1}+3 y_{2} \geq 1
C) Maximize z=59y1+34y2z=59 y 1+34 y 2
Subject to: 2y1+y222 \mathrm{y}_{1}+\mathrm{y}_{2} \geq 2
4y1+3y234 y_{1}+3 y_{2} \geq 3
3y1+2y213 y_{1}+2 y_{2} \geq 1
D) Maximize z=34y1+59y2z=34 y 1+59 y 2
Subject to: y1+2y22\mathrm{y}_{1}+2 \mathrm{y}_{2} \leq 2
3y1+4y233 y_{1}+4 y_{2} \leq 3
2y1+3y212 y_{1}+3 y_{2} \leq 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents