Question 36
Multiple Choice
In the previous three problems, the solution of the original problem is
A) u(x,t) =∑n=1∞cnsin(nπx/L) e−(nπ/L) 2t , where cn=∫0Lf(x) cos(nπx/L) dx
B) u(x,t) =∑n=1∞cncos(nπx/L) e−(nπ/L) 2t , where cn=∫0Lf(x) sin(nπx/L) dx
C) u(x,t) =∑n=1∞cnsin(nπx/L) e−(nπ/L) 2t , where cn=2∫0Lf(x) cos(nπx/L) dx/L
D) u(x,t) =∑n=1∞cnsin(nπx/L) e−(nπ/L) 2t , where cn=2∫0Lf(x) sin(nπx/L) dx/L
E) u(x,t) =∑n=0∞cncos(nπx/L) e−(nπ/L) 2t , where cx=2∫0Lf(x) cos(nπx/L) dx
Correct Answer:

Verified
Unlock this answer now
Get Access to more Verified Answers free of charge