Solved

Evaluate the Indefinite Integral as a Power Series tan1(t2)dt\int \tan ^ { - 1 } \left( t ^ { 2 } \right) d t

Question 1

Multiple Choice

Evaluate the indefinite integral as a power series. tan1(t2) dt\int \tan ^ { - 1 } \left( t ^ { 2 } \right) d t


A) C+n=0(1) nt2n+3(2n+3) C + \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } t ^ { 2 n + 3 } } { ( 2 n + 3 ) }
B) C+n=0(1) nt4n+3(2n+1) (4n+3) C + \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } t ^ { 4 n + 3 } } { ( 2 n + 1 ) ( 4 n + 3 ) }
C) C+n=0(1) nt2n+2(2n+1) C + \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } t ^ { 2 n + 2 } } { ( 2 n + 1 ) }
D) C+n=0(1) nt4n+2(2n+1) (4n+3) C + \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } t ^ { 4 n + 2 } } { ( 2 n + 1 ) ( 4 n + 3 ) }
E) C+n=0(1) nt4n+3(4n+3) C + \sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } t ^ { 4 n + 3 } } { ( 4 n + 3 ) }

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents