Solved

Let And Let S Be the Boundary Surface of the Solid

Question 1

Multiple Choice

Let F(x,y,z) =(x3+ysinz) i+(y3+z2sinz) j+(z3+x) k\mathbf { F } ( x , y , z ) = \left( x ^ { 3 } + y \sin z \right) \mathbf { i } + \left( y ^ { 3 } + z ^ { 2 } \sin z \right) \mathbf { j } + \left( z ^ { 3 } + x \right) \mathbf { k } and let S be the boundary surface of the solid E bounded by z=4x2y2,z=1x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } , z = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } , and z=0z = 0 . Evaluate the surface integral SFdS\iint _ { S } \mathbf { F } \cdot d \mathbf { S } .


A) 62π5\frac { 62 \pi } { 5 }

B) π2\frac { \pi } { 2 }
C) π\pi
D) 4π3\frac { 4 \pi } { 3 }
E) 2π3\frac { 2 \pi } { 3 }
F) 192π5\frac { 192 \pi } { 5 }

G) 186π5\frac { 186 \pi } { 5 }

H) 4π4 \pi

Correct Answer:

verifed

Verified

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents