Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Physics & Astronomy
Study Set
Physics for Scientists and Engineers Study Set 2
Quiz 2: Kinematics in One Dimension
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 41
Multiple Choice
A speeding car is traveling at a constant 30.0 m/s when it passes a stationary police car. If the police car delays for 1.00 s before starting, what must be the magnitude of the constant acceleration of the police car to catch the speeding car after the police car travels a distance of 300 m?
Question 42
Multiple Choice
A car starts from rest and accelerates with a constant acceleration of 1.00 m/s
2
for 3.00 s. The car continues for 5.00 s at constant velocity. How far has the car traveled from its starting point?
Question 43
Multiple Choice
At the same moment from the top of a building 3.0 × 10
2
m tall, one rock is dropped and one is thrown downward with an initial velocity of 10 m/s. Both of them experience negligible air resistance. How much EARLIER does the thrown rock strike the ground?
Question 44
Multiple Choice
A ball is projected upward at time t = 0.00 s, from a point on a roof 70 m above the ground and experiences negligible air resistance. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 28.5 m/s. Consider all quantities as positive in the upward direction. The velocity of the ball when it is 39 m above the ground is closest to
Question 45
Multiple Choice
A package is dropped from a helicopter moving upward at 15 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released if air resistance is negligible?
Question 46
Short Answer
A rock is thrown directly upward from the edge of the roof of a building that is 66.2 meters tall. The rock misses the building on its way down, and is observed to strike the ground 4.00 seconds after being thrown. Neglect any effects of air resistance. With what speed was the rock thrown?
Question 47
Essay
A foul ball is hit straight up into the air with a speed of 30.0 m/s. (a) Calculate the time required for the ball to rise to its maximum height. (b) Calculate the maximum height reached by the ball. (c) Determine the time at which the ball pass a point 25.0 m above the point of contact between the bat and ball. (d) Explain why there are two answers to part (c).
Question 48
Multiple Choice
A ball rolls across a floor with an acceleration of 0.100 m/s
2
in a direction opposite to its velocity. The ball has a velocity of 4.00 m/s after rolling a distance 6.00 m across the floor. What was the initial speed of the ball?
Question 49
Multiple Choice
A test rocket is fired straight up from rest with a net acceleration of 20.0 m/s
2
. After 4.00 seconds the motor turns off, but the rocket continues to coast upward with no appreciable air resistance. What maximum elevation does the rocket reach?
Question 50
Multiple Choice
A rock is dropped from the top of a vertical cliff and takes 3.00 s to reach the ground below the cliff. A second rock is thrown vertically from the cliff, and it takes this rock 2.00 s to reach the ground below the cliff from the time it is released. With what velocity was the second rock thrown, assuming no air resistance?
Question 51
Short Answer
A soccer ball is released from rest at the top of a grassy incline. After 8.6 seconds, the ball travels 87 meters and 1.0 s after this, the ball reaches the bottom of the incline. (a) What was the magnitude of the ball's acceleration, assume it to be constant? (b) How long was the incline?
Question 52
Multiple Choice
A ball is projected upward at time t = 0.0 s, from a point on a roof 90 m above the ground. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 36.2 m/s if air resistance is negligible. The time when the ball strikes the ground is closest to
Question 53
Multiple Choice
Two identical objects A and B fall from rest from different heights to the ground and feel no appreciable air resistance. If object B takes TWICE as long as object A to reach the ground, what is the ratio of the heights from which A and B fell?
Question 54
Multiple Choice
To determine the height of a flagpole, Abby throws a ball straight up and times it. She sees that the ball goes by the top of the pole after 0.50 s and then reaches the top of the pole again after a total elapsed time of 4.1 s. How high is the pole above the point where the ball was launched? (You can ignore air resistance.)
Question 55
Multiple Choice
A toy rocket is launched vertically from ground level (y = 0.00 m) , at time t = 0.00 s. The rocket engine provides constant upward acceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 72 m and acquired a velocity of 30 m/s. The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground with negligible air resistance. The speed of the rocket upon impact on the ground is closest to
Question 56
Multiple Choice
A car is 200 m from a stop sign and traveling toward the sign at 40.0 m/s. At this time, the driver suddenly realizes that she must stop the car. If it takes 0.200 s for the driver to apply the brakes, what must be the magnitude of the constant acceleration of the car after the brakes are applied so that the car will come to rest at the stop sign?
Question 57
Essay
A rocket takes off vertically from the launchpad with no initial velocity but a constant upward acceleration of 2.25 m/s
2
. At 15.4 s after blastoff, the engines fail completely so the only force on the rocket from then on is the pull of gravity. (a) What is the maximum height the rocket will reach above the launchpad? (b) How fast is the rocket moving at the instant before it crashes onto the launchpad? (c) How long after engine failure does it take for the rocket to crash onto the launchpad?
Question 58
Multiple Choice
Two identical stones are dropped from rest and feel no air resistance as they fall. Stone A is dropped from height h, and stone B is dropped from height 2h. If stone A takes time t to reach the ground, stone B will take time