Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Business
Study Set
Fundamentals of Cost Accounting Study Set 3
Quiz 5: Cost Estimation
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 61
Multiple Choice
Thane Company is interested in establishing the relationship between electricity costs and machine hours. Data have been collected and a regression analysis prepared using Excel. The monthly data and the regression output follow:
Month
MachineĀ Hours
ElectricityĀ Costs
Ā JanuaryĀ
2
,
500
$
18
,
400
Ā FebruaryĀ
2
,
900
21
,
000
Ā MarchĀ
1
,
900
13
,
500
Ā AprilĀ
3
,
100
23
,
000
Ā MayĀ
3
,
800
28
,
250
Ā JuneĀ
3
,
300
22
,
000
Ā JulyĀ
4
,
100
24
,
750
Ā AugustĀ
3
,
500
22
,
750
Ā SeptemberĀ
2
,
000
15
,
500
Ā OctoberĀ
3
,
700
26
,
000
Ā NovemberĀ
4
,
700
31
,
000
Ā DecemberĀ
4
,
200
27
,
750
\begin{array}{lll}\text {Month}&\text {Machine Hours}&\text {Electricity Costs}\\\text { January } & 2,500 & \$ 18,400 \\\text { February } & 2,900 & 21,000 \\\text { March } & 1,900& 13,500 \\\text { April } & 3,100 & 23,000 \\\text { May } & 3,800& 28,250 \\\text { June } & 3,300& 22,000 \\\text { July } & 4,100 & 24,750\\\text { August } & 3,500 & 22,750 \\\text { September } & 2,000 & 15,500 \\\text { October } & 3,700 & 26,000 \\\text { November } & 4,700 & 31,000 \\\text { December } & 4,200 & 27,750\end{array}
Month
Ā JanuaryĀ
Ā FebruaryĀ
Ā MarchĀ
Ā AprilĀ
Ā MayĀ
Ā JuneĀ
Ā JulyĀ
Ā AugustĀ
Ā SeptemberĀ
Ā OctoberĀ
Ā NovemberĀ
Ā DecemberĀ
ā
MachineĀ Hours
2
,
500
2
,
900
1
,
900
3
,
100
3
,
800
3
,
300
4
,
100
3
,
500
2
,
000
3
,
700
4
,
700
4
,
200
ā
ElectricityĀ Costs
$18
,
400
21
,
000
13
,
500
23
,
000
28
,
250
22
,
000
24
,
750
22
,
750
15
,
500
26
,
000
31
,
000
27
,
750
ā
Ā SummaryĀ OutputĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
0.965
Ā RĀ SquuareĀ
0.932
Ā AdjustedĀ RĀ
2
0.925
Ā StandardĀ ErrorĀ
1
,
425.18
Ā ObservationsĀ
12.00
\begin{array}{c} { \text { Summary Output } } \\ { \text { Regression Statistics } } \\\begin{array}{ | l | c | } \hline \text { Multiple R } & 0.965 \\\hline \text { R Squuare } & 0.932 \\\hline \text { Adjusted R } ^2 & 0.925 \\\hline \text { Standard Error } & 1,425.18 \\\hline \text { Observations } & 12.00 \\\hline\end{array}\end{array}
Ā SummaryĀ OutputĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
Ā RĀ SquuareĀ
Ā AdjustedĀ RĀ
2
Ā StandardĀ ErrorĀ
Ā ObservationsĀ
ā
0.965
0.932
0.925
1
,
425.18
12.00
ā
ā
ā
Ā StandardĀ
Ā LowerĀ
Ā UpperĀ
Ā CoefficientsĀ
Ā ErrorĀ
Ā tĀ StatĀ
Ā P-valueĀ
95
%
95
%
Ā InterceptĀ
3
,
726.88
1
,
682.82
2.21
0.05
(
22.69
)
7
,
476.45
Ā MachineĀ
5.77
0.49
11.7
0.00
4.67
6.87
Ā HoursĀ
\begin{array}{|l|r|r|r|r|r|r|}\hline && \text { Standard } & && \text { Lower } & \text { Upper } \\&\text { Coefficients } & \text { Error } & \text { t Stat } & \text { P-value } & 95 \% & 95 \% \\ \hline \text { Intercept } & 3,726.88 & 1,682.82 & 2.21 & 0.05 & (22.69) & 7,476.45 \\\hline \text { Machine } & 5.77 & 0.49 & 11.7 & 0.00 & 4.67 & 6.87 \\\text { Hours } & & & & & \\\hline\end{array}
Ā InterceptĀ
Ā MachineĀ
Ā HoursĀ
ā
Ā CoefficientsĀ
3
,
726.88
5.77
ā
Ā StandardĀ
Ā ErrorĀ
1
,
682.82
0.49
ā
Ā tĀ StatĀ
2.21
11.7
ā
Ā P-valueĀ
0.05
0.00
ā
Ā LowerĀ
95%
(
22.69
)
4.67
ā
Ā UpperĀ
95%
7
,
476.45
6.87
ā
ā
- If the controller uses the high-low method to estimate costs, the variable cost per machine hour is:
Question 62
Multiple Choice
The College of Business at Northeast College is accumulating data as a first step in the preparation of next year's budget development. One cost that is being looked at closely is administrative costs as a function of student credit hours. Data on administrative costs and credit hours for the past thirteen months are shown below:
Ā AdministrativeĀ
Ā CreditĀ
Ā MonthĀ
Ā CostsĀ
Ā HoursĀ
Ā JulyĀ
$
129
,
301
250
Ā AugustĀ
82
,
613
115
Ā SeptemberĀ
225
,
580
1
,
392
Ā OctoberĀ
216
,
394
1
,
000
Ā NovemberĀ
258
,
263
1
,
309
Ā DecemberĀ
184
,
445
1
,
112
Ā JanuaryĀ
219
,
137
1
,
335
Ā FebruaryĀ
245
,
000
1
,
373
Ā MarchĀ
209
,
462
1
,
064
Ā AprilĀ
191
,
925
1
,
123
Ā MayĀ
249
,
978
1
,
360
Ā JuneĀ
170
,
41
ε
420
Ā JulyĀ
128
,
167
315
Ā TotalĀ
$
2
,
510
,
687
12
,
172
Ā AverageĀ
$
193
,
130
936
\begin{array}{lrr}& \text { Administrative } & \text { Credit } \\\text { Month } & \text { Costs } & \text { Hours }\\\text { July } & \$ 129,301 & 250 \\\text { August } & 82,613 & 115 \\\text { September } & 225,580 & 1,392 \\\text { October } & 216,394 & 1,000 \\\text { November } & 258,263 & 1,309\\\text { December } & 184,445 & 1,112 \\\text { January } & 219,137 & 1,335 \\\text { February } & 245,000 & 1,373 \\\text { March } & 209,462 & 1,064 \\\text { April } & 191,925 & 1,123 \\\text { May } & 249,978 & 1,360\\\text { June } & 170,41 \varepsilon & 420 \\\text { July } & 128,167 & 315 \\\text { Total } & \$ 2,510,687 & 12,172 \\\text { Average } & \$ 193,130 & 936\end{array}
Ā MonthĀ
Ā JulyĀ
Ā AugustĀ
Ā SeptemberĀ
Ā OctoberĀ
Ā NovemberĀ
Ā DecemberĀ
Ā JanuaryĀ
Ā FebruaryĀ
Ā MarchĀ
Ā AprilĀ
Ā MayĀ
Ā JuneĀ
Ā JulyĀ
Ā TotalĀ
Ā AverageĀ
ā
Ā AdministrativeĀ
Ā CostsĀ
$129
,
301
82
,
613
225
,
580
216
,
394
258
,
263
184
,
445
219
,
137
245
,
000
209
,
462
191
,
925
249
,
978
170
,
41
ε
128
,
167
$2
,
510
,
687
$193
,
130
ā
Ā CreditĀ
Ā HoursĀ
250
115
1
,
392
1
,
000
1
,
309
1
,
112
1
,
335
1
,
373
1
,
064
1
,
123
1
,
360
420
315
12
,
172
936
ā
The controller's office has analyzed the data and has given you the results from the regression analysis:
Ā SUMMARYĀ OUTPUTĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
0.9317157
Ā RĀ SquareĀ
0.868094147
Ā AdjustedĀ RĀ SquareĀ
0.856102705
Ā StandardĀ ErrorĀ
20
,
134.92395
Ā ObservationsĀ
13
\begin{array}{c} { \text { SUMMARY OUTPUT } } \\ { \text { Regression Statistics } } \\\begin{array} { | l | r | } \hline \text { Multiple R } & 0.9317157 \\\hline \text { R Square } & 0.868094147 \\\hline \text { Adjusted R Square } & 0.856102705 \\\hline \text { Standard Error } & 20,134.92395 \\\hline \text { Observations } & 13 \\\hline\end{array}\end{array}
Ā SUMMARYĀ OUTPUTĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
Ā RĀ SquareĀ
Ā AdjustedĀ RĀ SquareĀ
Ā StandardĀ ErrorĀ
Ā ObservationsĀ
ā
0.9317157
0.868094147
0.856102705
20
,
134.92395
13
ā
ā
ā
Ā ANOVAĀ
Ā df
Ā SĀ SĀ
Ā MĀ SĀ
Ā FĀ
Ā SignificanceĀ Ā FĀ
Ā RepressionĀ
1
29
,
349
,
143
,
514
29
,
349
,
143
,
514
72.3928117
3.61909
E
ā
06
Ā ResidualĀ
11
4
,
459
,
566
,
787
405
,
415
,
162.4
Ā TotalĀ
12
33
,
808
,
710
,
301
\begin{array} { | l | r | r | r | r | r | } \hline \text { ANOVA } & & & & & \\\hline & \text { df} & \text { S S } & \text { M S } & \text { F } & \text { Significance } \text { F } \\\hline \text { Repression } & 1 & 29,349,143,514 & 29,349,143,514 & 72.3928117 & 3.61909 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 4,459,566,787 & 405,415,162.4 & & \\\hline \text { Total } & 12 & 33,808,710,301 & & & \\\hline\end{array}
Ā ANOVAĀ
Ā RepressionĀ
Ā ResidualĀ
Ā TotalĀ
ā
Ā df
1
11
12
ā
Ā SĀ SĀ
29
,
349
,
143
,
514
4
,
459
,
566
,
787
33
,
808
,
710
,
301
ā
Ā MĀ SĀ
29
,
349
,
143
,
514
405
,
415
,
162.4
ā
Ā FĀ
72.3928117
ā
Ā SignificanceĀ
Ā FĀ
3.61909
E
ā
06
ā
ā
- Based on the results of the regression analysis, the estimate of the variable portion of administrative costs in a month with 200 credit hours would be:
Question 63
Multiple Choice
Thane Company is interested in establishing the relationship between electricity costs and machine hours. Data have been collected and a regression analysis prepared using Excel. The monthly data and the regression output follow:
Month
MachineĀ Hours
ElectricityĀ Costs
Ā JanuaryĀ
2
,
500
$
18
,
400
Ā FebruaryĀ
2
,
900
21
,
000
Ā MarchĀ
1
,
900
13
,
500
Ā AprilĀ
3
,
100
23
,
000
Ā MayĀ
3
,
800
28
,
250
Ā JuneĀ
3
,
300
22
,
000
Ā JulyĀ
4
,
100
24
,
750
Ā AugustĀ
3
,
500
22
,
750
Ā SeptemberĀ
2
,
000
15
,
500
Ā OctoberĀ
3
,
700
26
,
000
Ā NovemberĀ
4
,
700
31
,
000
Ā DecemberĀ
4
,
200
27
,
750
\begin{array}{lll}\text {Month}&\text {Machine Hours}&\text {Electricity Costs}\\\text { January } & 2,500 & \$ 18,400 \\\text { February } & 2,900 & 21,000 \\\text { March } & 1,900& 13,500 \\\text { April } & 3,100 & 23,000 \\\text { May } & 3,800& 28,250 \\\text { June } & 3,300& 22,000 \\\text { July } & 4,100 & 24,750\\\text { August } & 3,500 & 22,750 \\\text { September } & 2,000 & 15,500 \\\text { October } & 3,700 & 26,000 \\\text { November } & 4,700 & 31,000 \\\text { December } & 4,200 & 27,750\end{array}
Month
Ā JanuaryĀ
Ā FebruaryĀ
Ā MarchĀ
Ā AprilĀ
Ā MayĀ
Ā JuneĀ
Ā JulyĀ
Ā AugustĀ
Ā SeptemberĀ
Ā OctoberĀ
Ā NovemberĀ
Ā DecemberĀ
ā
MachineĀ Hours
2
,
500
2
,
900
1
,
900
3
,
100
3
,
800
3
,
300
4
,
100
3
,
500
2
,
000
3
,
700
4
,
700
4
,
200
ā
ElectricityĀ Costs
$18
,
400
21
,
000
13
,
500
23
,
000
28
,
250
22
,
000
24
,
750
22
,
750
15
,
500
26
,
000
31
,
000
27
,
750
ā
Ā SummaryĀ OutputĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
0.965
Ā RĀ SquuareĀ
0.932
Ā AdjustedĀ RĀ
2
0.925
Ā StandardĀ ErrorĀ
1
,
425.18
Ā ObservationsĀ
12.00
\begin{array}{c} { \text { Summary Output } } \\ { \text { Regression Statistics } } \\\begin{array}{ | l | c | } \hline \text { Multiple R } & 0.965 \\\hline \text { R Squuare } & 0.932 \\\hline \text { Adjusted R } ^2 & 0.925 \\\hline \text { Standard Error } & 1,425.18 \\\hline \text { Observations } & 12.00 \\\hline\end{array}\end{array}
Ā SummaryĀ OutputĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
Ā RĀ SquuareĀ
Ā AdjustedĀ RĀ
2
Ā StandardĀ ErrorĀ
Ā ObservationsĀ
ā
0.965
0.932
0.925
1
,
425.18
12.00
ā
ā
ā
Ā StandardĀ
Ā LowerĀ
Ā UpperĀ
Ā CoefficientsĀ
Ā ErrorĀ
Ā tĀ StatĀ
Ā P-valueĀ
95
%
95
%
Ā InterceptĀ
3
,
726.88
1
,
682.82
2.21
0.05
(
22.69
)
7
,
476.45
Ā MachineĀ
5.77
0.49
11.7
0.00
4.67
6.87
Ā HoursĀ
\begin{array}{|l|r|r|r|r|r|r|}\hline && \text { Standard } & && \text { Lower } & \text { Upper } \\&\text { Coefficients } & \text { Error } & \text { t Stat } & \text { P-value } & 95 \% & 95 \% \\ \hline \text { Intercept } & 3,726.88 & 1,682.82 & 2.21 & 0.05 & (22.69) & 7,476.45 \\\hline \text { Machine } & 5.77 & 0.49 & 11.7 & 0.00 & 4.67 & 6.87 \\\text { Hours } & & & & & \\\hline\end{array}
Ā InterceptĀ
Ā MachineĀ
Ā HoursĀ
ā
Ā CoefficientsĀ
3
,
726.88
5.77
ā
Ā StandardĀ
Ā ErrorĀ
1
,
682.82
0.49
ā
Ā tĀ StatĀ
2.21
11.7
ā
Ā P-valueĀ
0.05
0.00
ā
Ā LowerĀ
95%
(
22.69
)
4.67
ā
Ā UpperĀ
95%
7
,
476.45
6.87
ā
ā
- Based on the results of the high-low analysis, the estimate of electricity costs in a month with 2,200 machine hours would be:
Question 64
Multiple Choice
The College of Business at Northeast College is accumulating data as a first step in the preparation of next year's budget development. One cost that is being looked at closely is administrative costs as a function of student credit hours. Data on administrative costs and credit hours for the past thirteen months are shown below:
Ā AdministrativeĀ
Ā CreditĀ
Ā MonthĀ
Ā CostsĀ
Ā HoursĀ
Ā JulyĀ
$
129
,
301
250
Ā AugustĀ
82
,
613
115
Ā SeptemberĀ
225
,
580
1
,
392
Ā OctoberĀ
216
,
394
1
,
000
Ā NovemberĀ
258
,
263
1
,
309
Ā DecemberĀ
184
,
445
1
,
112
Ā JanuaryĀ
219
,
137
1
,
335
Ā FebruaryĀ
245
,
000
1
,
373
Ā MarchĀ
209
,
462
1
,
064
Ā AprilĀ
191
,
925
1
,
123
Ā MayĀ
249
,
978
1
,
360
Ā JuneĀ
170
,
41
ε
420
Ā JulyĀ
128
,
167
315
Ā TotalĀ
$
2
,
510
,
687
12
,
172
Ā AverageĀ
$
193
,
130
936
\begin{array}{lrr}& \text { Administrative } & \text { Credit } \\\text { Month } & \text { Costs } & \text { Hours }\\\text { July } & \$ 129,301 & 250 \\\text { August } & 82,613 & 115 \\\text { September } & 225,580 & 1,392 \\\text { October } & 216,394 & 1,000 \\\text { November } & 258,263 & 1,309\\\text { December } & 184,445 & 1,112 \\\text { January } & 219,137 & 1,335 \\\text { February } & 245,000 & 1,373 \\\text { March } & 209,462 & 1,064 \\\text { April } & 191,925 & 1,123 \\\text { May } & 249,978 & 1,360\\\text { June } & 170,41 \varepsilon & 420 \\\text { July } & 128,167 & 315 \\\text { Total } & \$ 2,510,687 & 12,172 \\\text { Average } & \$ 193,130 & 936\end{array}
Ā MonthĀ
Ā JulyĀ
Ā AugustĀ
Ā SeptemberĀ
Ā OctoberĀ
Ā NovemberĀ
Ā DecemberĀ
Ā JanuaryĀ
Ā FebruaryĀ
Ā MarchĀ
Ā AprilĀ
Ā MayĀ
Ā JuneĀ
Ā JulyĀ
Ā TotalĀ
Ā AverageĀ
ā
Ā AdministrativeĀ
Ā CostsĀ
$129
,
301
82
,
613
225
,
580
216
,
394
258
,
263
184
,
445
219
,
137
245
,
000
209
,
462
191
,
925
249
,
978
170
,
41
ε
128
,
167
$2
,
510
,
687
$193
,
130
ā
Ā CreditĀ
Ā HoursĀ
250
115
1
,
392
1
,
000
1
,
309
1
,
112
1
,
335
1
,
373
1
,
064
1
,
123
1
,
360
420
315
12
,
172
936
ā
The controller's office has analyzed the data and has given you the results from the regression analysis:
Ā SUMMARYĀ OUTPUTĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
0.9317157
Ā RĀ SquareĀ
0.868094147
Ā AdjustedĀ RĀ SquareĀ
0.856102705
Ā StandardĀ ErrorĀ
20
,
134.92395
Ā ObservationsĀ
13
\begin{array}{c} { \text { SUMMARY OUTPUT } } \\ { \text { Regression Statistics } } \\\begin{array} { | l | r | } \hline \text { Multiple R } & 0.9317157 \\\hline \text { R Square } & 0.868094147 \\\hline \text { Adjusted R Square } & 0.856102705 \\\hline \text { Standard Error } & 20,134.92395 \\\hline \text { Observations } & 13 \\\hline\end{array}\end{array}
Ā SUMMARYĀ OUTPUTĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
Ā RĀ SquareĀ
Ā AdjustedĀ RĀ SquareĀ
Ā StandardĀ ErrorĀ
Ā ObservationsĀ
ā
0.9317157
0.868094147
0.856102705
20
,
134.92395
13
ā
ā
ā
Ā ANOVAĀ
Ā df
Ā SĀ SĀ
Ā MĀ SĀ
Ā FĀ
Ā SignificanceĀ Ā FĀ
Ā RepressionĀ
1
29
,
349
,
143
,
514
29
,
349
,
143
,
514
72.3928117
3.61909
E
ā
06
Ā ResidualĀ
11
4
,
459
,
566
,
787
405
,
415
,
162.4
Ā TotalĀ
12
33
,
808
,
710
,
301
\begin{array} { | l | r | r | r | r | r | } \hline \text { ANOVA } & & & & & \\\hline & \text { df} & \text { S S } & \text { M S } & \text { F } & \text { Significance } \text { F } \\\hline \text { Repression } & 1 & 29,349,143,514 & 29,349,143,514 & 72.3928117 & 3.61909 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 4,459,566,787 & 405,415,162.4 & & \\\hline \text { Total } & 12 & 33,808,710,301 & & & \\\hline\end{array}
Ā ANOVAĀ
Ā RepressionĀ
Ā ResidualĀ
Ā TotalĀ
ā
Ā df
1
11
12
ā
Ā SĀ SĀ
29
,
349
,
143
,
514
4
,
459
,
566
,
787
33
,
808
,
710
,
301
ā
Ā MĀ SĀ
29
,
349
,
143
,
514
405
,
415
,
162.4
ā
Ā FĀ
72.3928117
ā
Ā SignificanceĀ
Ā FĀ
3.61909
E
ā
06
ā
ā
- If the controller uses regression analysis to estimate costs, the cost equation for administrative costs is:
Question 65
Multiple Choice
The College of Business at Northeast College is accumulating data as a first step in the preparation of next year's budget development. One cost that is being looked at closely is administrative costs as a function of student credit hours. Data on administrative costs and credit hours for the past thirteen months are shown below:
Ā AdministrativeĀ
Ā CreditĀ
Ā MonthĀ
Ā CostsĀ
Ā HoursĀ
Ā JulyĀ
$
129
,
301
250
Ā AugustĀ
82
,
613
115
Ā SeptemberĀ
225
,
580
1
,
392
Ā OctoberĀ
216
,
394
1
,
000
Ā NovemberĀ
258
,
263
1
,
309
Ā DecemberĀ
184
,
445
1
,
112
Ā JanuaryĀ
219
,
137
1
,
335
Ā FebruaryĀ
245
,
000
1
,
373
Ā MarchĀ
209
,
462
1
,
064
Ā AprilĀ
191
,
925
1
,
123
Ā MayĀ
249
,
978
1
,
360
Ā JuneĀ
170
,
41
ε
420
Ā JulyĀ
128
,
167
315
Ā TotalĀ
$
2
,
510
,
687
12
,
172
Ā AverageĀ
$
193
,
130
936
\begin{array}{lrr}& \text { Administrative } & \text { Credit } \\\text { Month } & \text { Costs } & \text { Hours }\\\text { July } & \$ 129,301 & 250 \\\text { August } & 82,613 & 115 \\\text { September } & 225,580 & 1,392 \\\text { October } & 216,394 & 1,000 \\\text { November } & 258,263 & 1,309\\\text { December } & 184,445 & 1,112 \\\text { January } & 219,137 & 1,335 \\\text { February } & 245,000 & 1,373 \\\text { March } & 209,462 & 1,064 \\\text { April } & 191,925 & 1,123 \\\text { May } & 249,978 & 1,360\\\text { June } & 170,41 \varepsilon & 420 \\\text { July } & 128,167 & 315 \\\text { Total } & \$ 2,510,687 & 12,172 \\\text { Average } & \$ 193,130 & 936\end{array}
Ā MonthĀ
Ā JulyĀ
Ā AugustĀ
Ā SeptemberĀ
Ā OctoberĀ
Ā NovemberĀ
Ā DecemberĀ
Ā JanuaryĀ
Ā FebruaryĀ
Ā MarchĀ
Ā AprilĀ
Ā MayĀ
Ā JuneĀ
Ā JulyĀ
Ā TotalĀ
Ā AverageĀ
ā
Ā AdministrativeĀ
Ā CostsĀ
$129
,
301
82
,
613
225
,
580
216
,
394
258
,
263
184
,
445
219
,
137
245
,
000
209
,
462
191
,
925
249
,
978
170
,
41
ε
128
,
167
$2
,
510
,
687
$193
,
130
ā
Ā CreditĀ
Ā HoursĀ
250
115
1
,
392
1
,
000
1
,
309
1
,
112
1
,
335
1
,
373
1
,
064
1
,
123
1
,
360
420
315
12
,
172
936
ā
The controller's office has analyzed the data and has given you the results from the regression analysis:
Ā SUMMARYĀ OUTPUTĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
0.9317157
Ā RĀ SquareĀ
0.868094147
Ā AdjustedĀ RĀ SquareĀ
0.856102705
Ā StandardĀ ErrorĀ
20
,
134.92395
Ā ObservationsĀ
13
\begin{array}{c} { \text { SUMMARY OUTPUT } } \\ { \text { Regression Statistics } } \\\begin{array} { | l | r | } \hline \text { Multiple R } & 0.9317157 \\\hline \text { R Square } & 0.868094147 \\\hline \text { Adjusted R Square } & 0.856102705 \\\hline \text { Standard Error } & 20,134.92395 \\\hline \text { Observations } & 13 \\\hline\end{array}\end{array}
Ā SUMMARYĀ OUTPUTĀ
Ā RegressionĀ StatisticsĀ
Ā MultipleĀ RĀ
Ā RĀ SquareĀ
Ā AdjustedĀ RĀ SquareĀ
Ā StandardĀ ErrorĀ
Ā ObservationsĀ
ā
0.9317157
0.868094147
0.856102705
20
,
134.92395
13
ā
ā
ā
Ā ANOVAĀ
Ā df
Ā SĀ SĀ
Ā MĀ SĀ
Ā FĀ
Ā SignificanceĀ Ā FĀ
Ā RepressionĀ
1
29
,
349
,
143
,
514
29
,
349
,
143
,
514
72.3928117
3.61909
E
ā
06
Ā ResidualĀ
11
4
,
459
,
566
,
787
405
,
415
,
162.4
Ā TotalĀ
12
33
,
808
,
710
,
301
\begin{array} { | l | r | r | r | r | r | } \hline \text { ANOVA } & & & & & \\\hline & \text { df} & \text { S S } & \text { M S } & \text { F } & \text { Significance } \text { F } \\\hline \text { Repression } & 1 & 29,349,143,514 & 29,349,143,514 & 72.3928117 & 3.61909 \mathrm { E } - 06 \\\hline \text { Residual } & 11 & 4,459,566,787 & 405,415,162.4 & & \\\hline \text { Total } & 12 & 33,808,710,301 & & & \\\hline\end{array}
Ā ANOVAĀ
Ā RepressionĀ
Ā ResidualĀ
Ā TotalĀ
ā
Ā df
1
11
12
ā
Ā SĀ SĀ
29
,
349
,
143
,
514
4
,
459
,
566
,
787
33
,
808
,
710
,
301
ā
Ā MĀ SĀ
29
,
349
,
143
,
514
405
,
415
,
162.4
ā
Ā FĀ
72.3928117
ā
Ā SignificanceĀ
Ā FĀ
3.61909
E
ā
06
ā
ā
- If the controller uses regression analysis to estimate costs, the estimate of the variable portion of administrative costs is:
Question 66
Multiple Choice
In determining cost behavior in business, the cost function is often expressed as Y = a + bX. Which one of the following cost estimation methods should not be used in estimating fixed and variable costs for the equation? (CMA adapted)