Solved

An Analyst Has Identified 3 Independent Variables (X1, X2, X3)

Question 57

Multiple Choice

An analyst has identified 3 independent variables (X1, X2, X3) which might be used to predict Y. He has computed the regression equations using all combinations of the variables and the results are summarized in the following table. Why is the R2 value for the X3 model the same as the R2 value for the X1 and X3 model, but the Adjusted R2 values differ?  Independent Variable in the Adjusted Model R2R2 Se Parameter Estimates X10.000890.12423.548 b0=93.7174, b1=0.922X20.38700.310418.448 b0=57.0803, b2=1.545X1 and X20.39100.217019.654 b0=50.2927, b1=1.952, b2=1.554X30.84130.82149.3858 b0=31.6238, b3=1.132X1 and X30.84130.796010.033 b0=31.133, b1=0.148, b3=1.132X2 and X30.98630.98242.948 b0=14.169, b2=0.985, b3=0.995 All three 0.98710.98073.085 b0=11.113, b1=0.899, b2=0.990 b3=0.993\begin{array}{lcccl}\text { Independent}\\\text { Variable in the}&\text { Adjusted}\\ \hline\text { Model } & \mathrm{R}^{2} & -\mathrm{R}^{2} & \mathrm{~S}_{\mathrm{e}} & \text { Parameter Estimates } \\\hline \mathrm{X}_{1} & 0.00089 & -0.124 & 23.548 & \mathrm{~b}_{0}=93.7174, \mathrm{~b}_{1}=0.922 \\\mathrm{X}_{2} & 0.3870 & 0.3104 & 18.448 & \mathrm{~b}_{0}=57.0803, \mathrm{~b}_{2}=1.545 \\\mathrm{X}_{1} \text { and } \mathrm{X}_{2} & 0.3910 & 0.2170 & 19.654 & \mathrm{~b}_{0}=50.2927, \mathrm{~b}_{1}=1.952, \mathrm{~b}_{2}=1.554 \\\mathrm{X}_{3} & 0.8413 & 0.8214 & 9.3858 & \mathrm{~b}_{0}=31.6238, \mathrm{~b}_{3}=1.132 \\\mathrm{X}_{1} \text { and } \mathrm{X}_{3} & 0.8413 & 0.7960 & 10.033 & \mathrm{~b}_{0}=31.133, \mathrm{~b}_{1}=0.148, \mathrm{~b}_{3}=1.132 \\\mathrm{X}_{2} \text { and } \mathrm{X}_{3} & 0.9863 & 0.9824 & 2.948 & \mathrm{~b}_{0}=14.169, \mathrm{~b}_{2}=0.985, \mathrm{~b}_{3}=0.995 \\\text { All three } & 0.9871 & 0.9807 & 3.085 & \mathrm{~b}_{0}=11.113, \mathrm{~b}_{1}=0.899, \mathrm{~b}_{2}=0.990 \\&&&&\mathrm{~b}_{3}=0.993\end{array}


A) The standard error for X1 is greater than the standard error for X3.
B) X1 does not reduce ESS enough to compensate for its addition to the model.
C) X1 does not reduce TSS enough to compensate for its addition to the model.
D) X1 and X3 represent similar factors so multicollinearity exists.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents