Solved

Recall That the Average of a Function f(x)f ( x )

Question 12

Multiple Choice

Recall that the average of a function f(x) f ( x ) on an interval [a,b][ a , b ] is fˉ=1baabf(x) dx\bar { f } = \frac { 1 } { b - a } \int _ { a } ^ { b } f ( x ) \mathrm { d } x
Calculate the 9-unit moving average of the function.
f(x) =cos(πx18) f ( x ) = \cos \left( \frac { \pi x } { 18 } \right)


A) fˉ(x) =2π(sin(πx18) cos(πx18) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) - \cos \left( \frac { \pi x } { 18 } \right) \right)
B) fˉ(x) =2π(sin(πx18) cos(πx3) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) - \cos \left( \frac { \pi x } { 3 } \right) \right)
C) fˉ(x) =2π(sin(πx18) +cos(πx2) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) + \cos \left( \frac { \pi x } { 2 } \right) \right)
D) fˉ(x) =2π(cos(πx18) sin(πx18) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \cos \left( \frac { \pi x } { 18 } \right) - \sin \left( \frac { \pi x } { 18 } \right) \right)
E) fˉ(x) =2π(sin(πx18) +cos(πx18) ) \bar { f } ( x ) = \frac { 2 } { \pi } \left( \sin \left( \frac { \pi x } { 18 } \right) + \cos \left( \frac { \pi x } { 18 } \right) \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents