Solved

The Complete Second-Order Model Data Points  ANOVA \text { ANOVA }

Question 66

Essay

The complete second-order model E(y)=β0+β1x1+β2x2+β3x1x2+β4x12+β5x22 was fit to n=25E ( y ) = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } x _ { 2 } + \beta _ { 4 } x _ { 1 } ^ { 2 } + \beta _ { 5 } x _ { 2 } ^ { 2 } \text { was fit to } n = 25 data points. The printout is shown below.  ANOVA \text { ANOVA }
df SS MSF Significance F  Regression 522812.465384562.49307756487.986.12671E39 Residual 191.5346161870.080769273 Total 2422814\begin{array}{llllll} \hline& d f & \text { SS } & M S & F & \text { Significance F } \\\hline \text { Regression } & 5 & 22812.46538 & 4562.493077 & 56487.98 & 6.12671 \mathrm{E}-39 \\\text { Residual } & 19 & 1.534616187 & 0.080769273 & & \\\text { Total } & 24 & 22814 & & & \\\hline \end{array}


 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 0.2022743070.3776038820.5356785690.5983960640.992608560.588059946X10.579564910.1846975373.1379135780.0054168890.1929884020.966141418X20.5029839370.1309401233.8413278150.0011008550.2289230240.777044849X1X21.9761108070.02201104389.778153571.92982E261.930041152.022180464X120.0268252920.0253509941.0581554540.3032529050.0798855480.026234964X220.0129443580.0150889780.8578684460.4016574920.0186372450.044525961\begin{array}{lllllll}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -0.202274307 & 0.377603882 & -0.535678569 & 0.598396064 & -0.99260856 & 0.588059946 \\\mathrm{X} 1 & 0.57956491 & 0.184697537 & 3.137913578 & 0.005416889 & 0.192988402 & 0.966141418 \\\mathrm{X} 2 & 0.502983937 & 0.130940123 & 3.841327815 & 0.001100855 & 0.228923024 & 0.777044849 \\\mathrm{X}1^{*} \mathrm{X} 2 & 1.976110807 & 0.022011043 & 89.77815357 & 1.92982 \mathrm{E}-26 & 1.93004115 & 2.022180464 \\\mathrm{X}1^{\wedge} 2 & -0.026825292 & 0.025350994 & -1.058155454 & 0.303252905 & -0.079885548 & 0.026234964 \\\mathrm{X}2^{\wedge} 2 & 0.012944358 & 0.015088978 & 0.857868446 & 0.401657492 & -0.018637245 & 0.044525961 \\\hline\end{array} a. Write the complete second-order model for the data.
b. Is there sufficient evidence to indicate that at least one of the parameters β1,β2,β3,β4\beta _ { 1 } , \beta _ { 2 } , \beta _ { 3 } , \beta _ { 4 } , and β5\beta _ { 5 } is nonzero?
Test using α=.05\alpha = .05 .
c. Test H0:β3=0H _ { 0 } : \beta _ { 3 } = 0 against Ha:β30H _ { \mathrm { a } } : \beta _ { 3 } \neq 0 . Use α=.01\alpha = .01 .
d. Test H0:β4=0H _ { 0 } : \beta _ { 4 } = 0 against Ha:β40H _ { \mathrm { a } } : \beta _ { 4 } \neq 0 . Use α=.01\alpha = .01 . 3 Test if Model is Useful for Predicting y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents