Solved

During Its Manufacture, a Product Is Subjected to Four Different (y)( y )

Question 4

Multiple Choice

During its manufacture, a product is subjected to four different tests in sequential order. An efficiency expert claims that the fourth (and last) test is unnecessary since its results can be predicted based on the first three tests. To test this claim, multiple regression will be used to model Test4 score (y) ( y ) , as a function of Test1 score (x1) \left( x _ { 1 } \right) , Test 2 score (x2) \left( x _ { 2 } \right) , and Test3 score (x3) \left( x _ { 3 } \right) ) . [Note: All test scores range from 200 to 800 , with higher scores indicative of a higher quality product.] Consider the model:
E(y) =β1+β1x1+β2x2+β3x3E ( y ) = \beta _ { 1 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 }
The first-order model was fit to the data for each of 12 units sampled from the production line. The results are summarized in the printout.  SOURCE  DF  SS  MS  FVALUE  PROB >F  MODEL 31514175047218.16.0075 ERROR 8222312779 TOTAL 12173648\begin{array}{lrrrrr}\hline & & & & & \\\text { SOURCE } & \text { DF } & \text { SS } & \text { MS } & \text { FVALUE } & \text { PROB >F } \\\text { MODEL } & 3 & 151417 & 50472 & 18.16 & .0075 \\\text { ERROR } & 8 & 22231 & 2779 & & \\\text { TOTAL } & 12 & 173648 & & &\end{array}


 ROOT MSE 52.72 R-SQUARE 0.872 DEP MEAN 645.8 ADJ R-SQ 0.824\begin{array}{llll}\text { ROOT MSE } & 52.72 & \text { R-SQUARE } & 0.872 \\\text { DEP MEAN } & 645.8 & \text { ADJ R-SQ } & 0.824\end{array}


 PARAMETER  STANDARD  T FOR 0:  VARIABLE  ESTIMATE  ERROR  PARAMETER =0 PROB >T INTERCEPT 11.9880.500.150.885 X1(TEST1)  0.27450.11112.470.039 X2(TEST2)  0.37620.09863.820.005 X3(TEST3)  0.32650.08084.040.004\begin{array}{lrrrr} & \text { PARAMETER } & \text { STANDARD } & \text { T FOR 0: } & \\\text { VARIABLE } & \text { ESTIMATE } & \text { ERROR } & \text { PARAMETER }=0 & \text { PROB }>|\mathrm{T}| \\\text { INTERCEPT } & 11.98 & 80.50 & 0.15 & 0.885 \\\text { X1(TEST1) } & 0.2745 & 0.1111 & 2.47 & 0.039 \\\text { X2(TEST2) } & 0.3762 & 0.0986 & 3.82 & 0.005 \\\text { X3(TEST3) } & 0.3265 & 0.0808 & 4.04 & 0.004 \\\hline\end{array}

Suppose the 95%95 \% confidence interval for β3\beta _ { 3 } is (.15,.47) ( .15 , .47 ) . Which of the following statements is incorrect?


A) We are 95%95 \% confident that the increase in Test4 score for every 1 -point increase in Test 3 score falls between .15 and .47, holding Test 1 and Test2 fixed.
B) We are 95%95 \% confident that the Test3 is a useful linear predictor of Test4 score, holding Test1 and Test2 fixed.
C) We are 95%95 \% confident that the estimated slope for the Test 4 -Test3 line falls between .15 and .47.47 holding Test1 and Test2 fixed.
D) At α=.05\alpha = .05 , there is insufficient evidence to reject H0:β3=0H _ { 0 } : \beta _ { 3 } = 0 in favor of Ha:β30H _ { \mathrm { a } } : \beta _ { 3 } \neq 0 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents