Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Statistics
Study Set
Essentials of Statistics Study Set 1
Quiz 10: Correlation and Regression
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Question 21
Essay
Ten trucks were ranked according to their comfort levels and their prices.
 MakeÂ
 ComfortÂ
 PriceÂ
 AÂ
 1Â
6
 BÂ
6
2
 CÂ
2
3
 DÂ
8
1
 EÂ
4
4
 FÂ
7
8
 GÂ
9
16
 HÂ
1
Q
9
 JÂ
3
5
\begin{array} { c c c } \hline \text { Make } & \text { Comfort } & \text { Price } \\\hline \text { A } & \text { 1 } & 6 \\\text { B } & 6 & 2 \\\text { C } & 2 & 3 \\\text { D } & 8 & 1 \\\text { E } & 4 & 4 \\\text { F } & 7 & 8 \\\text { G } & 9 & 16 \\\text { H } & 1 Q & 9 \\\text { J } & \mathbf { 3 } & 5 \\\hline\end{array}
 MakeÂ
 AÂ
 BÂ
 CÂ
 DÂ
 EÂ
 FÂ
 GÂ
 HÂ
 JÂ
​
 ComfortÂ
 1Â
6
2
8
4
7
9
1
Q
3
​
 PriceÂ
6
2
3
1
4
8
16
9
5
​
​
Find the rank correlation coefficient and test the claim of correlation between comfort and price. Use a significance level of 0.05.
Question 22
Essay
Suppose there is significant correlation between two variables. Describe two cases under which it might be inappropriate to use the linear regression equation for prediction. Give examples to support these cases.
Question 23
Essay
Use the rank correlation coefficient to test for a correlation between the two variables. -Use the sample data below to find the rank correlation coefficient and test the claim of correlation between math and verbal scores. Use a significance level of 0.05.
 MathematicsÂ
347
440
327
456
427
349
377
398
425
 VerbalÂ
285
378
243
371
340
271
294
322
385
\begin{array} { l l l l l l l l l l } \text { Mathematics } & 347 & 440 & 327 & 456 & 427 & 349 & 377 & 398 & 425 \\\hline \text { Verbal } & 285 & 378 & 243 & 371 & 340 & 271 & 294 & 322 & 385\end{array}
 MathematicsÂ
 VerbalÂ
​
347
285
​
440
378
​
327
243
​
456
371
​
427
340
​
349
271
​
377
294
​
398
322
​
425
385
​
​
Question 24
Essay
Describe what scatterplots are and discuss the importance of creating scatterplots.
Question 25
Essay
Use the rank correlation coefficient to test for a correlation between the two variables. -Given that the rank correlation coefficient, rs, for 73 pairs of data is -0.663, test the claim of correlation between the two variables. Use a significance level of 0.05.
Question 26
Essay
Explain why having a significant linear correlation does not imply causality. Give an example to support your answer.
Question 27
Essay
Use the rank correlation coefficient to test for a correlation between the two variables. -The scores of twelve students on the midterm exam and the final exam were as follows.
 StudentÂ
 MidtermÂ
 FinalÂ
 NavarroÂ
93
91
 ReavesÂ
89
85
 HurlburtÂ
71
73
 KnuthÂ
65
77
 LengyelÂ
62
67
 McmeekanÂ
74
79
 BolkerÂ
77
65
 AmmattoÂ
87
83
 PothakosÂ
82
89
 Sul1 ivanÂ
81
71
 HahlÂ
91
81
 ZurfiuhÂ
83
94
\begin{array} { l c c } \hline \text { Student } & \text { Midterm } & \text { Final } \\\hline \text { Navarro } & 93 & 91 \\\text { Reaves } & 89 & 85 \\\text { Hurlburt } & 71 & 73 \\\text { Knuth } & 65 & 77 \\\text { Lengyel } & 62 & 67 \\\text { Mcmeekan } & 74 & 79 \\\text { Bolker } & 77 & 65 \\\text { Ammatto } & 87 & 83 \\\text { Pothakos } & 82 & 89 \\\text { Sul1 ivan } & 81 & 71 \\\text { Hahl } & 91 & 81 \\\text { Zurfiuh } & 83 & 94 \\\hline\end{array}
 StudentÂ
 NavarroÂ
 ReavesÂ
 HurlburtÂ
 KnuthÂ
 LengyelÂ
 McmeekanÂ
 BolkerÂ
 AmmattoÂ
 PothakosÂ
 Sul1 ivanÂ
 HahlÂ
 ZurfiuhÂ
​
 MidtermÂ
93
89
71
65
62
74
77
87
82
81
91
83
​
 FinalÂ
91
85
73
77
67
79
65
83
89
71
81
94
​
​
Find the rank correlation coefficient and test the claim of correlation between midterm score and final exam score. Use a significance level of 0.05.
Question 28
Essay
The variables height and weight could reasonably be expected to have a positive linear correlation coefficient, since taller people tend to be heavier, on average, than shorter people. Give an example of a pair of variables which you would expect to have a negative linear correlation coefficient and explain why. Then give an example of a pair of variables whose linear correlation coefficient is likely to be close to zero.
Question 29
Essay
Use the rank correlation coefficient to test for a correlation between the two variables. -A college administrator collected information on first-semester night-school students. A random sample taken of 12 students yielded the following data on age and GPA during the first semester.
 Age
 GPA
xÂ
‾
y
‾
18
1.2
26
3.8
27
2.0
37
3.3
33
2.5
47
1.6
20
1.4
48
3.6
50
3.7
38
3.4
34
2.7
22
2.8
\begin{array}{llcc} \text { Age} & \text { GPA} \\ \underline{\text {x }} & \underline{\text {y}}\\18&1.2\\26&3.8\\27&2.0\\37&3.3\\33&2.5\\47&1.6\\20&1.4\\48&3.6\\50&3.7\\38&3.4\\34&2.7\\22&2.8\end{array}
 Age
xÂ
​
18
26
27
37
33
47
20
48
50
38
34
22
​
 GPA
y
​
1.2
3.8
2.0
3.3
2.5
1.6
1.4
3.6
3.7
3.4
2.7
2.8
​
Do the data provide sufficient evidence to conclude that the variables age,
x
x
x
, and GPA,
y
y
y
, are correlated? Apply a rank-correlation test. Use
α
=
0.05
\alpha = 0.05
α
=
0.05
.
Question 30
Essay
A regression equation is obtained for a set of data. After examining a scatter diagram, the researcher notices a data point that is potentially an influential point. How could she confirm that this data point is indeed an influential point?
Question 31
Essay
Suppose paired data are collected consisting of, for each person, their weight in pounds and the number of calories burned in 30 minutes of walking on a treadmill at 3.5 mph. How would the value of the correlation coefficient, r, change if all of the weights were converted to kilograms?
Question 32
Essay
Use the rank correlation coefficient to test for a correlation between the two variables. -Ten luxury cars were ranked according to their comfort levels and their prices.
 MakeÂ
 ComfortÂ
 PriceÂ
 AÂ
5
1
 BÂ
8
7
 CÂ
9
3
 DÂ
10
5
 EÂ
4
4
 FÂ
3
2
 GÂ
2
10
 HÂ
1
9
 IÂ
7
6
J
6
8
\begin{array} { c c c } \hline \text { Make } & \text { Comfort } & \text { Price } \\\hline \text { A } & \mathbf { 5 } & 1 \\\text { B } & 8 & 7 \\\text { C } & 9 & 3 \\\text { D } & 10 & 5 \\\text { E } & 4 & 4 \\\text { F } & 3 & 2 \\\text { G } & 2 & 10 \\\text { H } & 1 & 9 \\\text { I } & 7 & 6 \\\mathbf { J } & 6 & 8 \\\hline\end{array}
 MakeÂ
 AÂ
 BÂ
 CÂ
 DÂ
 EÂ
 FÂ
 GÂ
 HÂ
 IÂ
J
​
 ComfortÂ
5
8
9
10
4
3
2
1
7
6
​
 PriceÂ
1
7
3
5
4
2
10
9
6
8
​
​
Find the rank correlation coefficient and test the claim of correlation between comfort and price. Use a significance level of 0.05.
Question 33
Essay
Given: The linear correlation coefficient between scores on a math test and scores on a test of athletic ability is negative and close to zero. Conclusion: People who score high on the math test tend to score lower on the test of athletic ability.
Question 34
Essay
Create a scatterplot that shows a perfect positive correlation between x and y. How would the scatterplot change if the correlation showed a) a strong positive correlation, b) a weak positive correlation, and c) no correlation?