Solved

Solve the Problem s=Asin(kmt)s = A \sin \left( \sqrt { \frac { \mathrm { k } } { \mathrm { m } } } \mathrm { t } \right)

Question 321

Multiple Choice

Solve the problem.
-The position (in centimeters) of an object oscillating up and down at the end of a spring is given by s=Asin(kmt) s = A \sin \left( \sqrt { \frac { \mathrm { k } } { \mathrm { m } } } \mathrm { t } \right) at time t\mathrm { t } (in seconds) . The value of A\mathrm { A } is the amplitude of the motion, k\mathrm { k } is a measure of the stiffness of the spring, and mm is the mass of the object. Find the object's acceleration at time tt .


A) a=Asin(kmt) cm/sec2 a = - A \sin \left( \sqrt { \frac { k } { m } } t \right) \mathrm { cm } / \sec ^ { 2 }
B) a=Akmsin(kmt) cm/sec2a = - A \sqrt { \frac { \mathrm { k } } { \mathrm { m } } } \sin \left( \sqrt { \frac { \mathrm { k } } { \mathrm { m } } } \mathrm { t } \right) \mathrm { cm } / \mathrm { sec } ^ { 2 }
C) a=Akmcos(kmt) cm/sec2 a = \frac { A k } { m } \cos \left( \sqrt { \frac { k } { m } } t \right) c m / \sec ^ { 2 }
D) a=Akmsin(kmt) cm/sec2a = - \frac { A k } { m } \sin \left( \sqrt { \frac { k } { m } } t \right) \mathrm { cm } / \mathrm { sec } ^ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents