Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Mathematics
Study Set
Thomas Calculus Early Transcendentals
Quiz 16: Multiple Integrals
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 221
Multiple Choice
Solve the problem. -Solve for a:
∫
0
a
∫
0
10
(
1
−
x
/
a
)
∫
0
3
(
1
−
x
/
a
−
y
/
10
)
d
z
d
y
d
x
=
15
\int _ { 0 } ^ { a } \int _ { 0 } ^ { 10 ( 1 - x / a ) } \int _ { 0 } ^ { 3 ( 1 - x / a - y / 10 ) } d z d y d x = 15
∫
0
a
∫
0
10
(
1
−
x
/
a
)
∫
0
3
(
1
−
x
/
a
−
y
/10
)
d
z
d
y
d
x
=
15
Question 222
Multiple Choice
Use a CAS integration utility to evaluate the triple integral of the given function over the specified solid region. -
F
(
x
,
y
,
z
)
=
x
2
y
4
z
2
F ( x , y , z ) = x ^ { 2 } y ^ { 4 } z ^ { 2 }
F
(
x
,
y
,
z
)
=
x
2
y
4
z
2
over the cylinder bounded by
x
2
+
y
2
≤
49
x ^ { 2 } + y ^ { 2 } \leq 49
x
2
+
y
2
≤
49
and the planes
z
=
−
7
,
z
=
10
z = - 7 , z = 10
z
=
−
7
,
z
=
10
Question 223
Multiple Choice
Evaluate the integral by changing the order of integration in an appropriate way. -
∫
0
10
∫
1
2
∫
x
/
10
1
e
y
3
z
d
y
d
z
d
x
\int _ { 0 } ^ { 10 } \int _ { 1 } ^ { 2 } \int _ { \sqrt { x / 10 } } ^ { 1 } \frac { e ^ { y ^ { 3 } } } { z } d y d z d x
∫
0
10
∫
1
2
∫
x
/10
1
z
e
y
3
d
y
d
z
d
x
Question 224
Multiple Choice
Evaluate the integral by changing the order of integration in an appropriate way. -
∫
1
2
∫
0
108
∫
y
/
3
6
sin
x
2
x
z
d
x
d
y
d
z
\int _ { 1 } ^ { 2 } \int _ { 0 } ^ { 108 } \int _ { \sqrt { y / 3 } } ^ { 6 } \frac { \sin x ^ { 2 } } { x z } d x d y d z
∫
1
2
∫
0
108
∫
y
/3
6
x
z
s
i
n
x
2
d
x
d
y
d
z
Question 225
Multiple Choice
Solve the problem. -What domain
D
\mathrm { D }
D
in space maximizes the value of the integral
∭
(
x
2
81
+
y
2
36
+
z
2
4
−
1
)
d
V
?
\iiint \left( \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 36 } + \frac { z ^ { 2 } } { 4 } - 1 \right) d V ?
∭
(
81
x
2
+
36
y
2
+
4
z
2
−
1
)
d
V
?
Question 226
Multiple Choice
Solve the problem. -Let
V
t
V _ { t }
V
t
be the volume of the tetrahedron bounded by the coordinate planes and the plane
x
3
+
y
4
+
z
3
=
1
\frac { x } { 3 } + \frac { y } { 4 } + \frac { z } { 3 } = 1
3
x
+
4
y
+
3
z
=
1
, and let
V
e
V _ { e }
V
e
be the volume of the ellipsoid
x
2
9
+
y
2
16
+
z
2
9
=
1
\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } + \frac { z ^ { 2 } } { 9 } = 1
9
x
2
+
16
y
2
+
9
z
2
=
1
. Find the quotient
V
e
V
t
\frac { V _ { e } } { V _ { t } }
V
t
V
e
.
Question 227
Multiple Choice
Solve the problem. -Solve for a:
∫
a
9
a
∫
a
9
a
∫
a
9
a
d
x
d
z
d
y
=
512
\int _ { a } ^ { 9 a } \int _ { a } ^ { 9 a } \int _ { a } ^ { 9 a } d x d z d y = 512
∫
a
9
a
∫
a
9
a
∫
a
9
a
d
x
d
z
d
y
=
512
Question 228
Multiple Choice
Evaluate the integral by changing the order of integration in an appropriate way. -
∫
0
1000
∫
z
3
10
∫
1
10
,
001
1
x
(
y
4
+
1
)
d
x
d
y
d
z
\int _ { 0 } ^ { 1000 } \int _ { \sqrt [ 3 ] { z } } ^ { 10 } \int _ { 1 } ^ { 10,001 } \frac { 1 } { x \left( y ^ { 4 } + 1 \right) } d x d y d z
∫
0
1000
∫
3
z
10
∫
1
10
,
001
x
(
y
4
+
1
)
1
d
x
d
y
d
z
Question 229
Multiple Choice
Solve the problem. -For what value of a is the volume of the tetrahedron formed by the coordinate planes and the plane
x
a
+
y
5
+
z
6
=
1
\frac { x } { a } + \frac { y } { 5 } + \frac { z } { 6 } = 1
a
x
+
5
y
+
6
z
=
1
equal to 4 ?
Question 230
Multiple Choice
Use a CAS integration utility to evaluate the triple integral of the given function over the specified solid region. -
F
(
x
,
y
,
z
)
=
8
x
−
8
y
2
+
7
z
3
F ( x , y , z ) = 8 x - 8 y ^ { 2 } + 7 z ^ { 3 }
F
(
x
,
y
,
z
)
=
8
x
−
8
y
2
+
7
z
3
over the rectangular solid
0
≤
x
≤
2
,
0
≤
y
≤
9
,
0
≤
z
≤
3
0 \leq x \leq 2,0 \leq y \leq 9,0 \leq z \leq 3
0
≤
x
≤
2
,
0
≤
y
≤
9
,
0
≤
z
≤
3
Question 231
Multiple Choice
Use a CAS integration utility to evaluate the triple integral of the given function over the specified solid region. -
F
(
x
,
y
,
z
)
=
(
1
+
x
+
y
+
z
)
2
over the rectangular cube
0
≤
x
,
y
,
z
≤
2
F ( x , y , z ) = ( 1 + x + y + z ) ^ { 2 } \text { over the rectangular cube } 0 \leq x , y , z \leq 2
F
(
x
,
y
,
z
)
=
(
1
+
x
+
y
+
z
)
2
over the rectangular cube
0
≤
x
,
y
,
z
≤
2
Question 232
Multiple Choice
Solve the problem. -Solve for a:
∫
0
48
a
∫
0
a
∫
0
x
2
d
y
d
x
d
z
=
81
\int _ { 0 } ^ { 48 a } \int _ { 0 } ^ { a } \int _ { 0 } ^ { x ^ { 2 } } d y d x d z = 81
∫
0
48
a
∫
0
a
∫
0
x
2
d
y
d
x
d
z
=
81
Question 233
Multiple Choice
Use a CAS integration utility to evaluate the triple integral of the given function over the specified solid region. -
F
(
x
,
y
,
z
)
=
(
1
(
x
2
+
4
)
(
y
2
+
4
)
(
z
2
+
4
)
)
3
/
2
F ( x , y , z ) = \left( \frac { 1 } { \left( x ^ { 2 } + 4 \right) \left( y ^ { 2 } + 4 \right) \left( z ^ { 2 } + 4 \right) } \right) ^ { 3 / 2 }
F
(
x
,
y
,
z
)
=
(
(
x
2
+
4
)
(
y
2
+
4
)
(
z
2
+
4
)
1
)
3/2
over the rectangular cube
0
≤
x
,
y
,
z
≤
1
0 \leq x , y , z \leq 1
0
≤
x
,
y
,
z
≤
1
Question 234
Multiple Choice
Use a CAS integration utility to evaluate the triple integral of the given function over the specified solid region. -
F
(
x
,
y
,
z
)
=
1
(
x
2
+
2
)
3
/
2
(
y
2
+
2
)
5
/
2
(
z
2
+
2
)
7
/
2
F ( x , y , z ) = \frac { 1 } { \left( x ^ { 2 } + 2 \right) ^ { 3 / 2 } \left( y ^ { 2 } + 2 \right) ^ { 5 / 2 } \left( z ^ { 2 } + 2 \right) ^ { 7 / 2 } }
F
(
x
,
y
,
z
)
=
(
x
2
+
2
)
3/2
(
y
2
+
2
)
5/2
(
z
2
+
2
)
7/2
1
over the rectangular cube
0
≤
x
,
y
,
z
≤
1
0 \leq x , y , z \leq 1
0
≤
x
,
y
,
z
≤
1
Question 235
Multiple Choice
Use a CAS integration utility to evaluate the triple integral of the given function over the specified solid region. -F(x, y, z) = 9x + 8y + 10z over the tetrahedron bounded by the coordinate planes and the plane x + y + z = 1