Solved

The Following MINITAB Output Presents a Multiple Regression Equatior y^\hat { y }

Question 51

Multiple Choice

The following MINITAB output presents a multiple regression equatior y^\hat { y } =b0+b1x1+b2x2+b3x3+b4x4
The regression equation is
Y=5.5079+1.6552X11.1088X2+1.3981X31.2465X4\mathrm { Y } = 5.5079 + 1.6552 \mathrm { X } 1 - 1.1088 \mathrm { X } 2 + 1.3981 \mathrm { X } 3 - 1.2465 \mathrm { X } 4

 Predictor  Coef  SE Coef  T  P  Constant 5.50790.76401.10020.314 X1 1.65520.70323.19290.002 X2 1.10880.60233.23100.005 X3 1.39810.89701.81370.087 X4 1.24650.82511.14330.354\begin{array}{lllll}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & 5.5079 & 0.7640 & 1.1002 & 0.314 \\\text { X1 } & 1.6552 & 0.7032 & 3.1929 & 0.002 \\\text { X2 } & -1.1088 & 0.6023 & -3.2310 & 0.005 \\\text { X3 } & 1.3981 & 0.8970 & 1.8137 & 0.087 \\\text { X4 } & -1.2465 & 0.8251 & -1.1433 & 0.354\end{array}

 The following MINITAB output presents a multiple regression equatior  \hat { y } =b<sub>0</sub>+b<sub>1</sub>x<sub>1</sub>+b<sub>2</sub>x<sub>2</sub>+b<sub>3</sub>x<sub>3</sub>+b<sub>4</sub>x<sub>4</sub> The regression equation is  \mathrm { Y } = 5.5079 + 1.6552 \mathrm { X } 1 - 1.1088 \mathrm { X } 2 + 1.3981 \mathrm { X } 3 - 1.2465 \mathrm { X } 4    \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 5.5079 & 0.7640 & 1.1002 & 0.314 \\ \text { X1 } & 1.6552 & 0.7032 & 3.1929 & 0.002 \\ \text { X2 } & -1.1088 & 0.6023 & -3.2310 & 0.005 \\ \text { X3 } & 1.3981 & 0.8970 & 1.8137 & 0.087 \\ \text { X4 } & -1.2465 & 0.8251 & -1.1433 & 0.354 \end{array}       \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 637.5 & 159.4 & 7.1480 & 0.003 \\ \text { Residual Error } & 40 & 893.2 & 22.3 & & \\ \text { Total } & 44 & 1,530.7 & & & \end{array}   Let  \beta _ { 1 }  be the coefficient  X _ { 1 }  Test the hypothesis  H _ { 0 } : \beta _ { 1 } = 0  rersus  H _ { 1 } : \beta _ { 1 } \neq 0 \text { at the } \alpha = 0.05  level. What do you conclude? A)  Do not H<sub>0</sub> B)  Reject H<sub>0</sub>

 Analysis of Variance \text { Analysis of Variance }
 Source  DF  SS  MS  F  P  Regression 4637.5159.47.14800.003 Residual Error 40893.222.3 Total 441,530.7\begin{array}{lccccc}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 4 & 637.5 & 159.4 & 7.1480 & 0.003 \\\text { Residual Error } & 40 & 893.2 & 22.3 & & \\\text { Total } & 44 & 1,530.7 & & &\end{array}

Let β1\beta _ { 1 } be the coefficient X1X _ { 1 } Test the hypothesis H0:β1=0H _ { 0 } : \beta _ { 1 } = 0 rersus H1:β10 at the α=0.05H _ { 1 } : \beta _ { 1 } \neq 0 \text { at the } \alpha = 0.05
level. What do you conclude?


A) Do not H0
B) Reject H0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents