Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Mathematics
Study Set
Calculus Combo
Quiz 9: Parametric Equations Polar Coordinates and Conic Sections
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Question 1
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
t
,
y
=
3
t
2
,
t
∈
(
−
∞
,
∞
)
x = t , \quad y = 3 t ^ { 2 } , \quad t \in ( - \infty , \infty )
x
=
t
,
y
=
3
t
2
,
t
∈
(
−
∞
,
∞
)
Question 2
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
1
−
t
,
y
=
−
2
t
2
,
t
≥
0
x = 1 - t , \quad y = - 2 t ^ { 2 } , \quad t \geq 0
x
=
1
−
t
,
y
=
−
2
t
2
,
t
≥
0
Question 3
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
3
t
+
1
,
y
=
9
t
2
−
2
,
t
∈
(
−
∞
,
∞
)
x = 3 t + 1 , \quad y = 9 t ^ { 2 } - 2 , \quad t \in ( - \infty , \infty )
x
=
3
t
+
1
,
y
=
9
t
2
−
2
,
t
∈
(
−
∞
,
∞
)
Question 4
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
−
2
t
,
y
=
6
t
2
−
1
,
t
∈
[
−
2
,
3
]
x = - 2 t , \quad y = 6 t ^ { 2 } - 1 , \quad t \in [ - 2,3 ]
x
=
−
2
t
,
y
=
6
t
2
−
1
,
t
∈
[
−
2
,
3
]
Question 5
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
2
t
+
1
,
y
=
3
t
,
t
∈
[
−
1
,
3
]
x = 2 t + 1 , \quad y = 3 t , \quad t \in [ - 1,3 ]
x
=
2
t
+
1
,
y
=
3
t
,
t
∈
[
−
1
,
3
]
Question 6
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
t
−
1
,
y
=
2
t
+
5
,
t
∈
(
−
∞
,
∞
)
x = t - 1 , \quad y = 2 t + 5 , \quad t \in ( - \infty , \infty )
x
=
t
−
1
,
y
=
2
t
+
5
,
t
∈
(
−
∞
,
∞
)
Question 7
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
−
4
t
,
y
=
−
3
t
+
1
,
t
∈
[
−
2
,
1
]
x = - 4 t , \quad y = - 3 t + 1 , \quad t \in [ - 2,1 ]
x
=
−
4
t
,
y
=
−
3
t
+
1
,
t
∈
[
−
2
,
1
]
Question 8
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
t
+
1
,
y
=
e
t
,
t
∈
(
−
∞
,
∞
)
x = t + 1 , \quad y = e ^ { t } , \quad t \in ( - \infty , \infty )
x
=
t
+
1
,
y
=
e
t
,
t
∈
(
−
∞
,
∞
)
Question 9
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
2
sin
t
,
y
=
2
cos
t
,
t
∈
[
0
,
2
π
]
x = 2 \sin t , \quad y = 2 \cos t , \quad t \in [ 0,2 \pi ]
x
=
2
sin
t
,
y
=
2
cos
t
,
t
∈
[
0
,
2
π
]
Question 10
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
3
cos
t
,
y
=
3
sin
t
,
t
∈
[
0
,
2
π
]
x = 3 \cos t , \quad y = 3 \sin t , \quad t \in [ 0,2 \pi ]
x
=
3
cos
t
,
y
=
3
sin
t
,
t
∈
[
0
,
2
π
]
Question 11
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
−
2
t
−
1
,
y
=
3
t
2
+
2
,
t
∈
(
−
∞
,
∞
)
x = - 2 t - 1 , \quad y = 3 t ^ { 2 } + 2 , \quad t \in ( - \infty , \infty )
x
=
−
2
t
−
1
,
y
=
3
t
2
+
2
,
t
∈
(
−
∞
,
∞
)
Question 12
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
3
sin
t
,
y
=
4
cos
t
,
t
∈
[
0
,
2
π
]
x = 3 \sin t , \quad y = 4 \cos t , \quad t \in [ 0,2 \pi ]
x
=
3
sin
t
,
y
=
4
cos
t
,
t
∈
[
0
,
2
π
]
Question 13
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
4
cos
t
,
y
=
3
sin
t
,
t
∈
[
0
,
2
π
]
x = 4 \cos t , \quad y = 3 \sin t , \quad t \in [ 0,2 \pi ]
x
=
4
cos
t
,
y
=
3
sin
t
,
t
∈
[
0
,
2
π
]
Question 14
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
sin
t
,
y
=
cos
2
t
,
t
∈
[
−
π
2
,
π
2
]
x = \sin t , \quad y = \cos 2 t , \quad t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right]
x
=
sin
t
,
y
=
cos
2
t
,
t
∈
[
−
2
π
,
2
π
]
Question 15
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.
x
=
cos
t
,
y
=
cos
2
t
,
t
∈
[
0
,
π
]
x = \cos t , \quad y = \cos 2 t , \quad t \in [ 0 , \pi ]
x
=
cos
t
,
y
=
cos
2
t
,
t
∈
[
0
,
π
]
Question 16
Multiple Choice
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.x = e
2
t
, y = t, t ? 0