Solved

The Amplifier in Fig Rsig =1kΩ,CB=1μF,CE=10R_{\text {sig }}=1 \mathrm{k} \Omega, C_{B}=1 \mu \mathrm{F}, C_{E}=10

Question 7

Essay

The amplifier in Fig. 10.7.1
 The amplifier in Fig. 10.7.1       Figure 10.7.1  has  R_{\text {sig }}=1 \mathrm{k} \Omega, C_{B}=1 \mu \mathrm{F}, C_{E}=10   \mu \mathrm{F}, C_{C}=1 \mu \mathrm{F}, R_{L}=8 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V} , and  V_{C C}=15 \mathrm{~V} . (a) Assuming  \beta=\infty , find  R_{B 1}, R_{B 2}, R_{E} , and  R_{C}  to operate the BJT at a dc bias point characterized by  I_{C}=1 \mathrm{~mA}  and  V_{C}=7 \mathrm{~V} . Design for  V_{B}=5 \mathrm{~V}  and a voltage-divider current of  0.1 \mathrm{~mA} . (b) Find  r_{e}, g_{m} , and  r_{\pi} , assuming  \beta=100 . (c) At midband frequencies, find  R_{\text {in }}, V_{b} / V_{\text {sig }} ,  V_{o} / V_{b} , and  V_{o} / V_{\text {sig }} , assuming  \beta=100 . (d) In the low-frequency band use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency,  f_{L} . (e) If  C_{\pi}=10 \mathrm{pF}  and  C_{\mu}=1 \mathrm{pF} , use the Miller approximation to determine the input capacitance of the amplifier at high frequencies, and hence determine an estimate of the high-frequency  3 \mathrm{~dB}  frequency,  f_{H} .

Figure 10.7.1
has Rsig =1kΩ,CB=1μF,CE=10R_{\text {sig }}=1 \mathrm{k} \Omega, C_{B}=1 \mu \mathrm{F}, C_{E}=10 μF,CC=1μF,RL=8kΩ,VBE=0.7 V\mu \mathrm{F}, C_{C}=1 \mu \mathrm{F}, R_{L}=8 \mathrm{k} \Omega, V_{B E}=0.7 \mathrm{~V} , and VCC=15 VV_{C C}=15 \mathrm{~V} .
(a) Assuming β=\beta=\infty , find RB1,RB2,RER_{B 1}, R_{B 2}, R_{E} , and RCR_{C} to operate the BJT at a dc bias point characterized by IC=1 mAI_{C}=1 \mathrm{~mA} and VC=7 VV_{C}=7 \mathrm{~V} . Design for VB=5 VV_{B}=5 \mathrm{~V} and a voltage-divider current of 0.1 mA0.1 \mathrm{~mA} .
(b) Find re,gmr_{e}, g_{m} , and rπr_{\pi} , assuming β=100\beta=100 .
(c) At midband frequencies, find Rin ,Vb/Vsig R_{\text {in }}, V_{b} / V_{\text {sig }} , Vo/VbV_{o} / V_{b} , and Vo/Vsig V_{o} / V_{\text {sig }} , assuming β=100\beta=100 .
(d) In the low-frequency band use the method of short-circuit time constants to obtain an estimate of the 3-dB frequency, fLf_{L} .
(e) If Cπ=10pFC_{\pi}=10 \mathrm{pF} and Cμ=1pFC_{\mu}=1 \mathrm{pF} , use the Miller approximation to determine the input capacitance of the amplifier at high frequencies, and hence determine an estimate of the high-frequency 3 dB3 \mathrm{~dB} frequency, fHf_{H} .

Correct Answer:

verifed

Verified

blured image
blured image

Figure 10.7.2
(a) From Fig. 10.7.2...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents