Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Statistics
Study Set
Business Statistics in Practice
Quiz 3: Descriptive Statistics: Numerical Methods
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 121
Essay
A random sample of 60 students in the business statistics course answered a survey on the average number of hours they spent on statistics each week.Unfortunately,the original data were lost and all that remains is the frequency table below.From these data,calculate the estimated sample standard deviation.
Class
Hrs
N
Midpt
fM
1
0
−
3
18
1.5
27
2
4
−
7
16
5.5
88
3
8
−
11
14
9.5
133
4
12
−
15
10
13.5
135
5
16
−
19
2
‾
17.5
35
‾
60
418
\begin{array}{cccccc}\text { Class } & \text { Hrs } & \text { N } & \text { Midpt } & \text { fM } \\1 & 0-3 & 18 & 1.5 & 27 \\2 & 4-7 & 16 & 5.5 & 88 \\3 & 8-11 & 14 & 9.5 & 133 \\4 & 12-15 & 10 & 13.5 & 135 \\5 & 16-19 &\underline { 2} & 17.5 & \underline {35}\\&&60&&418\\\end{array}
Class
1
2
3
4
5
Hrs
0
−
3
4
−
7
8
−
11
12
−
15
16
−
19
N
18
16
14
10
2
60
Midpt
1.5
5.5
9.5
13.5
17.5
fM
27
88
133
135
35
418
Question 122
Essay
In a study of the factors that affect success in economics,data were collected for 8 business students.Scores on a calculus placement test are given with economics final exam scores.The data are below:
Calculus
Placement Score
Exam Final
Score
17
73
21
66
11
64
16
61
15
70
11
71
24
90
27
68
\begin{array} { | l | l | } \hline \begin{array} { l } \text { Calculus } \\\text { Placement Score }\end{array} & \begin{array} { l } \text { Exam Final } \\\text { Score }\end{array} \\\hline 17 & 73 \\\hline 21 & 66 \\\hline 11 & 64 \\\hline 16 & 61 \\\hline 15 & 70 \\\hline 11 & 71 \\\hline 24 & 90 \\\hline 27 & 68 \\\hline\end{array}
Calculus
Placement Score
17
21
11
16
15
11
24
27
Exam Final
Score
73
66
64
61
70
71
90
68
It can be shown that for these data:
X
ˉ
=
17.75
,
y
ˉ
=
70.38
,
∑
i
=
1
8
(
x
i
−
x
ˉ
)
2
=
237.50
\bar{X}=17.75, \quad \bar{y}=70.38, \quad \sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)^{2}=237.50
X
ˉ
=
17.75
,
y
ˉ
=
70.38
,
∑
i
=
1
8
(
x
i
−
x
ˉ
)
2
=
237.50
∑
i
=
1
8
(
y
i
−
y
ˉ
)
2
=
545.875
,
∑
i
=
1
8
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
140.75
\sum_{i=1}^{8}\left(y_{i}-\bar{y}\right)^{2}=545.875, \quad \sum_{i=1}^{8}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=140.75
∑
i
=
1
8
(
y
i
−
y
ˉ
)
2
=
545.875
,
∑
i
=
1
8
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
140.75
Calculate b
1
.
Question 123
Multiple Choice
Researchers wish to study fuel consumption rates based on speed.The data from 10 cars are below.
Speed
Miles/Gallon
15
14
23
17
30
20
35
24
42
26
45
23
50
18
54
15
60
11
65
10
\begin{array} { | l | l | } \hline \text { Speed } & \text { Miles/Gallon } \\\hline 15 & 14 \\\hline 23 & 17 \\\hline 30 & 20 \\\hline 35 & 24 \\\hline 42 & 26 \\\hline 45 & 23 \\\hline 50 & 18 \\\hline 54 & 15 \\\hline 60 & 11 \\\hline 65 & 10 \\\hline\end{array}
Speed
15
23
30
35
42
45
50
54
60
65
Miles/Gallon
14
17
20
24
26
23
18
15
11
10
It can be shown that for these data:
X
ˉ
=
41.9
,
y
ˉ
=
17.8
,
∑
i
=
1
10
(
x
i
−
x
ˉ
)
2
=
2352.9
\bar{X}=41.9, \quad \bar{y}=17.8, \quad \sum_{i=1}^{10}\left(x_{i}-\bar{x}\right) ^{2}=2352.9
X
ˉ
=
41.9
,
y
ˉ
=
17.8
,
∑
i
=
1
10
(
x
i
−
x
ˉ
)
2
=
2352.9
∑
i
=
1
10
(
y
i
−
y
ˉ
)
2
=
267.6
,
∑
i
=
1
10
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
−
270.2
\sum_{i=1}^{10}\left(y_{i}-\bar{y}\right) ^{2}=267.6, \quad \sum_{i=1}^{10}\left(x_{i}-\bar{x}\right) \left(y_{i}-\bar{y}\right) =-270.2
∑
i
=
1
10
(
y
i
−
y
ˉ
)
2
=
267.6
,
∑
i
=
1
10
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
−
270.2
Calculate the sample correlation coefficient.
Question 124
Essay
A random sample of 60 students in the business statistics course answered a survey on the average number of hours they spent on statistics each week.Unfortunately,the original data were lost and all that remains is the frequency table below.From these data,calculate the estimated sample mean.
Class
Hrs
N
1
0
−
3
18
2
4
−
7
16
3
8
−
11
14
4
12
−
15
10
5
16
−
19
2
\begin{array} { c c r } \text { Class } & \text { Hrs } & \mathrm { N } \\1 & 0 - 3 & 18 \\2 & 4 - 7 & 16 \\3 & 8 - 11 & 14 \\4 & 12 - 15 & 10 \\5 & 16 - 19 & 2\end{array}
Class
1
2
3
4
5
Hrs
0
−
3
4
−
7
8
−
11
12
−
15
16
−
19
N
18
16
14
10
2
Question 125
Essay
The geometric mean growth rate of sales for used cars in a geographic area from 2005 to 2009 was 16.42 percent.Annual sales in 2005 were $14.2 million.Find the ending value of sales after this four-year period.
Question 126
Essay
The marketing research department of a company was asked to respond to the CEO's question about the average age of consumers of the company's most profitable product.From survey data gathered two years ago,the researchers found the following table.Calculate the average age to give to the CEO.
Midpt of Age Class
N
17.5
23.5
65
29.5
100
35.5
220
41.5
250
52.5
120
\begin{array} { | c | r | } \hline \text { Midpt of Age Class } & \text { N } \\\hline 17.5 & \\\hline 23.5 & 65 \\\hline 29.5 & 100 \\\hline 35.5 & 220 \\\hline 41.5 & 250 \\\hline 52.5 & 120 \\\hline\end{array}
Midpt of Age Class
17.5
23.5
29.5
35.5
41.5
52.5
N
65
100
220
250
120
Question 127
Essay
Researchers wish to study fuel consumption rates based on speed.The data from 10 cars are below:
Speed
Miles/Gallon
15
14
23
17
30
20
35
24
42
26
45
23
50
18
54
15
60
11
65
10
\begin{array} { | l | l | } \hline \text { Speed } & \text { Miles/Gallon } \\\hline 15 & 14 \\\hline 23 & 17 \\\hline 30 & 20 \\\hline 35 & 24 \\\hline 42 & 26 \\\hline 45 & 23 \\\hline 50 & 18 \\\hline 54 & 15 \\\hline 60 & 11 \\\hline 65 & 10 \\\hline\end{array}
Speed
15
23
30
35
42
45
50
54
60
65
Miles/Gallon
14
17
20
24
26
23
18
15
11
10
It can be shown that for these data:
X
ˉ
=
41.9
,
y
ˉ
=
17.8
,
∑
i
=
1
10
(
x
i
−
x
ˉ
)
2
=
2352.9
\bar{X}=41.9, \quad \bar{y}=17.8, \quad \sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}=2352.9
X
ˉ
=
41.9
,
y
ˉ
=
17.8
,
∑
i
=
1
10
(
x
i
−
x
ˉ
)
2
=
2352.9
∑
i
=
1
10
(
y
i
−
y
ˉ
)
2
=
267.6
,
∑
i
=
1
10
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
−
270.2
\sum_{i=1}^{10}\left(y_{i}-\bar{y}\right)^{2}=267.6, \quad \sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=-270.2
∑
i
=
1
10
(
y
i
−
y
ˉ
)
2
=
267.6
,
∑
i
=
1
10
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
−
270.2
Calculate b
1
.
Question 128
Essay
Find the weighted mean per capita income for the following random sample of six cities in the Midwest.
City
Population
Per Capita Income
A
540
,
000
$
26
,
338
B
1
,
250
,
000
$
28
,
455
C
325
,
000
$
36
,
574
D
2
,
461
,
000
$
33
,
690
E
845
,
000
$
31
,
998
F
620
,
000
$
29
,
442
\begin{array}{|l|r|r|}\hline \text { City } & \text { Population }&\text { Per Capita Income } \\\hline \text { A } & 540,000 &\$26,338 \\\hline \text { B } & 1,250,000 &\$ 28,455 \\\hline \text { C } & 325,000 &\$ 36,574 \\\hline \text { D } & 2,461,000 &\$ 33,690 \\\hline \text { E } & 845,000&\$ 31,998 \\\hline \text { F } & 620,000&\$ 29,442 \\\hline\end{array}
City
A
B
C
D
E
F
Population
540
,
000
1
,
250
,
000
325
,
000
2
,
461
,
000
845
,
000
620
,
000
Per Capita Income
$26
,
338
$28
,
455
$36
,
574
$33
,
690
$31
,
998
$29
,
442
Question 129
Essay
From the following table of values and corresponding sample sizes,calculate the weighted mean.
Question 130
Multiple Choice
In a study of the factors that affect success in economics,data were collected for 8 business students.Scores on a calculus placement test are given with economics final exam scores.The data are below:
Calculus
Placement Score
Exam Final
Score
17
73
21
66
11
64
16
61
15
70
11
71
24
90
27
68
\begin{array} { | l | l | } \hline \begin{array} { l } \text { Calculus } \\\text { Placement Score }\end{array} & \begin{array} { l } \text { Exam Final } \\\text { Score }\end{array} \\\hline 17 & 73 \\\hline 21 & 66 \\\hline 11 & 64 \\\hline 16 & 61 \\\hline 15 & 70 \\\hline 11 & 71 \\\hline 24 & 90 \\\hline 27 & 68 \\\hline\end{array}
Calculus
Placement Score
17
21
11
16
15
11
24
27
Exam Final
Score
73
66
64
61
70
71
90
68
It can be shown that for these data:
X
ˉ
=
17.75
,
y
ˉ
=
70.38
,
∑
i
=
1
8
(
x
i
−
x
ˉ
)
2
=
237.50
\bar{X}=17.75, \quad \bar{y}=70.38, \quad \sum_{i=1}^{8}\left(x_{i}-\bar{x}\right) ^{2}=237.50
X
ˉ
=
17.75
,
y
ˉ
=
70.38
,
∑
i
=
1
8
(
x
i
−
x
ˉ
)
2
=
237.50
∑
i
=
1
8
(
y
i
−
y
ˉ
)
2
=
545.875
,
∑
i
=
1
8
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
140.75
\sum_{i=1}^{8}\left(y_{i}-\bar{y}\right) ^{2}=545.875, \quad \sum_{i=1}^{8}\left(x_{i}-\bar{x}\right) \left(y_{i}-\bar{y}\right) =140.75
∑
i
=
1
8
(
y
i
−
y
ˉ
)
2
=
545.875
,
∑
i
=
1
8
(
x
i
−
x
ˉ
)
(
y
i
−
y
ˉ
)
=
140.75
Calculate the sample covariance.
Question 131
Essay
Using grouped data of 14 classes with a sample mean of 51 and a sample variance of 6.42,calculate the group sampled standard deviation.
Question 132
Essay
A real estate appraiser is gathering housing sales data by street in the neighborhood in preparation for his next job.Listed below are the six streets and the average sales price and the houses sold in the last 12 months.Calculate the mean sales price for the neighborhood.
Street
Avg Sales Price
N
Elm
159
,
999
1
Maple
210
,
998
6
Oak
185
,
000
4
Pine
202
,
632
4
Rose
175
,
500
5
Petunia
352
,
941
3
\begin{array} { | l | c | r | } \hline \text { Street } & \text { Avg Sales Price } & \mathrm { N } \\\hline \text { Elm } & 159,999 & 1 \\\hline \text { Maple } & 210,998 & 6 \\\hline \text { Oak } & 185,000 & 4 \\\hline \text { Pine } & 202,632 & 4 \\\hline \text { Rose } & 175,500 & 5 \\\hline \text { Petunia } & 352,941 & 3 \\\hline\end{array}
Street
Elm
Maple
Oak
Pine
Rose
Petunia
Avg Sales Price
159
,
999
210
,
998
185
,
000
202
,
632
175
,
500
352
,
941
N
1
6
4
4
5
3
Question 133
Essay
In an analysis of the relationship between the average weekly temperature in a major city and the per person consumption of ice cream (pints),a least squares line is defined by the equation 5.72 + .004x.Predict the average amount of ice cream consumed when it is 50° outside.
Question 134
Essay
An initial investment of $10,000 is observed over 3 years with a geometric mean return at the end of year 3 of 0.512.Determine the value of the investment after 3 years.
Question 135
Essay
Joe Smith's IRA at the end of 2007 had a value of $1.2 million.With a rate of return of -29.75 percent in 2008 and a rate of return of 2.98 percent in 2009,calculate the geometric mean rate of return for the two-year period.