Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Statistics
Study Set
Practical Econometrics
Quiz 6: Multiple Linear Regression Analysis
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 21
Multiple Choice
Figure Suppose that in the course of testing whether Age and Family Size are jointly significant,you estimate the results in Figure 6.3.
Ā SUMMARYĀ OUTPUTĀ
Ā RegrestionĀ StarittictĀ
Ā MuftipleĀ R.Ā
0.070494476
Ā RĀ SequrtĀ
0.004969471
Ā AdigatedĀ R.Ā SquareĀ
0.001879314
Ā StandardĀ EsrorĀ
4.819403326
Ā ObservationsĀ
970
\begin{array}{lc}\text { SUMMARY OUTPUT }\\\\\\\hline\text { Regrestion Starittict } & \\\hline \text { Muftiple R. } & 0.070494476 \\\text { R Sequrt } & 0.004969471 \\\text { Adigated R. Square } & 0.001879314 \\\text { Standard Esror } & 4.819403326 \\\text { Observations } & 970 \\\hline\end{array}
Ā SUMMARYĀ OUTPUTĀ
Ā RegrestionĀ StarittictĀ
Ā MuftipleĀ R.Ā
Ā RĀ SequrtĀ
Ā AdigatedĀ R.Ā SquareĀ
Ā StandardĀ EsrorĀ
Ā ObservationsĀ
ā
0.070494476
0.004969471
0.001879314
4.819403326
970
ā
ā
Ā ANOVAĀ
d
f
S
5
M
S
F
Ā SignifieanceĀ
F
Ā RegranionĀ
3
112.0566012
37.3522004
1.608161442
0.185858614
Ā ReaidualĀ
966
22436.94237
23.22664841
Ā TotalĀ
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S 5 & M S & F & \text { Signifieance } F \\\hline \text { Regranion } & 3 & 112.0566012 & 37.3522004 & 1.608161442 & 0.185858614 \\\text { Reaidual } & 966 & 22436.94237 & 23.22664841 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
Ā ANOVAĀ
Ā RegranionĀ
Ā ReaidualĀ
Ā TotalĀ
ā
df
3
966
969
ā
S
5
112.0566012
22436.94237
22548.99897
ā
MS
37.3522004
23.22664841
ā
F
1.608161442
ā
Ā SignifieanceĀ
F
0.185858614
ā
ā
ā
Ā CoeffeienttĀ
Ā SrandardĀ ErrorĀ
Ā tĀ StatĀ
Ā P-valueĀ
Ā LowerĀ
9596
Ā UpperĀ
9596
Ā InterceptĀ
4.049920982
1.042107341
3.886280064
0.000108739
2.004865844
6.094976119
Ā AgeĀ
0.015626984
0.010365497
1.507396119
0.131984878
ā
0.004714504
0.035968471
Ā FamilyĀ SizeĀ
ā
0.093093463
0.084602383
ā
1.100364552
0.271447442
ā
0.259119103
0.072932177
Ā YearsĀ ofĀ EducationĀ
0.005642075
0.06474525
0.087142685
0.930576157
ā
0.121415476
0.132699626
\begin{array}{lcccccc}\hline & \text { Coeffeientt } & \text { Srandard Error } & \text { t Stat } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.049920982 & 1.042107341 & 3.886280064 & 0.000108739 & 2.004865844 & 6.094976119 \\\text { Age } & 0.015626984 & 0.010365497 & 1.507396119 & 0.131984878 & -0.004714504 & 0.035968471 \\\text { Family Size } & -0.093093463 & 0.084602383 & -1.100364552 & 0.271447442 & -0.259119103 & 0.072932177 \\\text { Years of Education } & 0.005642075 & 0.06474525 & 0.087142685 & 0.930576157 & -0.121415476 & 0.132699626 \\\hline\end{array}
Ā InterceptĀ
Ā AgeĀ
Ā FamilyĀ SizeĀ
Ā YearsĀ ofĀ EducationĀ
ā
Ā CoeffeienttĀ
4.049920982
0.015626984
ā
0.093093463
0.005642075
ā
Ā SrandardĀ ErrorĀ
1.042107341
0.010365497
0.084602383
0.06474525
ā
Ā tĀ StatĀ
3.886280064
1.507396119
ā
1.100364552
0.087142685
ā
Ā P-valueĀ
0.000108739
0.131984878
0.271447442
0.930576157
ā
Ā LowerĀ
9596
2.004865844
ā
0.004714504
ā
0.259119103
ā
0.121415476
ā
Ā UpperĀ
9596
6.094976119
0.035968471
0.072932177
0.132699626
ā
ā
Ā SUMALARYĀ OUTPUTĀ
\text { SUMALARY OUTPUT }
Ā SUMALARYĀ OUTPUTĀ
Ā RegrestionĀ StaritticzĀ
Ā MultipleĀ R.Ā
0.005034034
Ā RĀ SquareĀ
2.53415
E
ā
05
Ā AdjutedĀ R.Ā SquareĀ
ā
0.00100769
Ā StandardĀ ErrorĀ
4.826368211
Ā ObservationsĀ
970
\begin{array}{lc}\hline \text { Regrestion Staritticz } & \\\hline \text { Multiple R. } & 0.005034034 \\\text { R Square } & 2.53415 \mathrm{E}-05 \\\text { Adjuted R. Square } & -0.00100769 \\\text { Standard Error } & 4.826368211 \\\text { Observations } & 970 \\\hline\end{array}
Ā RegrestionĀ StaritticzĀ
Ā MultipleĀ R.Ā
Ā RĀ SquareĀ
Ā AdjutedĀ R.Ā SquareĀ
Ā StandardĀ ErrorĀ
Ā ObservationsĀ
ā
0.005034034
2.53415
E
ā
05
ā
0.00100769
4.826368211
970
ā
ā
0.115170636
0.115170636
0.115170636
Ā ANOVAĀ
d
f
S
S
M
S
F
Ā SignffeanceĀ
F
Ā RegresionĀ
1
0.571425385
0.571425385
0.024531191
0.875573561
Ā ReiidualĀ
968
22548.42754
23.29383011
Ā TotalĀ
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Signffeance } F \\\hline \text { Regresion } & 1 & 0.571425385 & 0.571425385 & 0.024531191 & 0.875573561 \\\text { Reiidual } & 968 & 22548.42754 & 23.29383011 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
Ā ANOVAĀ
Ā RegresionĀ
Ā ReiidualĀ
Ā TotalĀ
ā
df
1
968
969
ā
SS
0.571425385
22548.42754
22548.99897
ā
MS
0.571425385
23.29383011
ā
F
0.024531191
ā
Ā SignffeanceĀ
F
0.875573561
ā
ā
ā
Ā CoefficientyĀ
Ā StandardĀ EmorĀ
Ā tĀ StarĀ
Ā P-valueĀ
Ā LowerĀ
9596
Ā UpperĀ
9596
Ā InterceptĀ
4.288825645
0.732966216
5.851327866
6.66867
E
ā
09
2.850439806
5.727211483
Ā YearsĀ ofĀ EducationĀ
0.009850586
0.062893064
0.156624361
0.875573561
ā
0.113571873
0.133273045
Ā FigureĀ
6.3
\begin{array}{l}\begin{array}{lcccccc}\hline & \text { Coefficienty } & \text { Standard Emor } & \text { t Star } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.288825645 & 0.732966216 & 5.851327866 & 6.66867 E-09 & 2.850439806 & 5.727211483 \\\text { Years of Education } & 0.009850586 & 0.062893064 & 0.156624361 & 0.875573561 & -0.113571873 & 0.133273045 \\\hline\end{array}\\\text { Figure } 6.3\end{array}
Ā InterceptĀ
Ā YearsĀ ofĀ EducationĀ
ā
Ā CoefficientyĀ
4.288825645
0.009850586
ā
Ā StandardĀ EmorĀ
0.732966216
0.062893064
ā
Ā tĀ StarĀ
5.851327866
0.156624361
ā
Ā P-valueĀ
6.66867
E
ā
09
0.875573561
ā
Ā LowerĀ
9596
2.850439806
ā
0.113571873
ā
Ā UpperĀ
9596
5.727211483
0.133273045
ā
ā
Ā FigureĀ
6.3
ā
-Chow tests are based on comparing the
Question 22
Essay
What is the coefficient of determination? What information does it provide? Explain.
Question 23
Multiple Choice
Suppose you are estimating salary as a function of age,education,hours of work and the number of young children and you are concerned that the salary functions differ for men and women.You could test this possibility by performing a
Question 24
Multiple Choice
Figure: Suppose that in the course of testing whether salary functions differ for males and females,you estimate the pooled and male and female results in Figure 6.4.
Ā PooledĀ
\text { Pooled }
Ā PooledĀ
Ā ANOVAĀ
d
f
S
S
M
S
F
Ā SignificanceĀ
F
Ā RegressionĀ
4
2.30931
E
+
12
5.77328
E
+
11
282.1787278
1.2198
E
ā
215
Ā ResidualĀ
4286
8.76901
E
+
12
2045965635
Ā TotalĀ
4290
1.10783
E
+
13
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 2.30931 \mathrm{E}+12 & 5.77328 \mathrm{E}+11 & 282.1787278 & 1.2198 \mathrm{E}-215 \\\text { Residual } & 4286 & 8.76901 \mathrm{E}+12 & 2045965635 & & \\\text { Total } & 4290 & 1.10783 \mathrm{E}+13 & & & \\\hline\end{array}\end{array}
Ā ANOVAĀ
Ā RegressionĀ
Ā ResidualĀ
Ā TotalĀ
ā
df
4
4286
4290
ā
SS
2.30931
E
+
12
8.76901
E
+
12
1.10783
E
+
13
ā
MS
5.77328
E
+
11
2045965635
ā
F
282.1787278
ā
Ā SignificanceĀ
F
1.2198
E
ā
215
ā
ā
ā
Ā MaleĀ
\text { Male }
Ā MaleĀ
Ā ANOVAĀ
d
f
S
S
M
S
F
Ā SignificanceĀ
F
Ā RegressionĀ
4
1.54309
E
+
12
3.85772
E
+
11
131.8489492
9.4649
E
ā
101
Ā ResidualĀ
2136
6.24964
E
+
12
2925860190
Ā TotalĀ
2140
7.79272
E
+
12
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 1.54309 \mathrm{E}+12 & 3.85772 \mathrm{E}+11 & 131.8489492 & 9.4649 \mathrm{E}-101 \\\text { Residual } & 2136 & 6.24964 \mathrm{E}+12 & 2925860190 & & \\\text { Total } & 2140 & 7.79272 \mathrm{E}+12 & & & \\\hline\end{array}\end{array}
Ā ANOVAĀ
Ā RegressionĀ
Ā ResidualĀ
Ā TotalĀ
ā
df
4
2136
2140
ā
SS
1.54309
E
+
12
6.24964
E
+
12
7.79272
E
+
12
ā
MS
3.85772
E
+
11
2925860190
ā
F
131.8489492
ā
Ā SignificanceĀ
F
9.4649
E
ā
101
ā
ā
ā
Ā FemaleĀ
\text { Female }
Ā FemaleĀ
Ā ANOVAĀ
Ā ofĀ
S
S
M
S
F
Ā SignificanceĀ
F
Ā RegressionĀ
4
6.15055
E
+
11
1.53764
E
+
11
153.1758618
2.2255
E
ā
115
Ā ResidualĀ
2145
2.15323
E
+
12
1003838471
Ā TotalĀ
2149
2.76829
E
+
12
\begin{array}{lccccc} \text { ANOVA }\\\hline& \text { of } & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 6.15055 \mathrm{E}+11 & 1.53764 \mathrm{E}+11 & 153.1758618 & 2.2255 \mathrm{E}-115 \\\text { Residual } & 2145 & 2.15323 \mathrm{E}+12 & 1003838471 & & \\\text { Total } & 2149 & 2.76829 \mathrm{E}+12 & & &\\\hline\end{array}
Ā ANOVAĀ
Ā RegressionĀ
Ā ResidualĀ
Ā TotalĀ
ā
Ā ofĀ
4
2145
2149
ā
SS
6.15055
E
+
11
2.15323
E
+
12
2.76829
E
+
12
ā
MS
1.53764
E
+
11
1003838471
ā
F
153.1758618
ā
Ā SignificanceĀ
F
2.2255
E
ā
115
ā
ā
Figure 6.4 -The appropriate critical value for the Chow test in Figure 6.4 is
Question 25
Essay
What are the multiple linear regression assumptions required for OLS to be BLUE? Explain why each one is important.
Question 26
Essay
How do you perform a test of the overall significance of the regression function? What are the null and alternative hypothesis for this test? What is the rejection rule? What is the intuition for why the test works? Explain.