Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Statistics
Study Set
Practical Econometrics
Quiz 6: Multiple Linear Regression Analysis
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Practice Exam
Learn
Question 21
Multiple Choice
Figure Suppose that in the course of testing whether Age and Family Size are jointly significant,you estimate the results in Figure 6.3.
SUMMARY OUTPUT
Regrestion Starittict
Muftiple R.
0.070494476
R Sequrt
0.004969471
Adigated R. Square
0.001879314
Standard Esror
4.819403326
Observations
970
\begin{array}{lc}\text { SUMMARY OUTPUT }\\\\\\\hline\text { Regrestion Starittict } & \\\hline \text { Muftiple R. } & 0.070494476 \\\text { R Sequrt } & 0.004969471 \\\text { Adigated R. Square } & 0.001879314 \\\text { Standard Esror } & 4.819403326 \\\text { Observations } & 970 \\\hline\end{array}
SUMMARY OUTPUT
Regrestion Starittict
Muftiple R.
R Sequrt
Adigated R. Square
Standard Esror
Observations
0.070494476
0.004969471
0.001879314
4.819403326
970
ANOVA
d
f
S
5
M
S
F
Signifieance
F
Regranion
3
112.0566012
37.3522004
1.608161442
0.185858614
Reaidual
966
22436.94237
23.22664841
Total
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S 5 & M S & F & \text { Signifieance } F \\\hline \text { Regranion } & 3 & 112.0566012 & 37.3522004 & 1.608161442 & 0.185858614 \\\text { Reaidual } & 966 & 22436.94237 & 23.22664841 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
ANOVA
Regranion
Reaidual
Total
df
3
966
969
S
5
112.0566012
22436.94237
22548.99897
MS
37.3522004
23.22664841
F
1.608161442
Signifieance
F
0.185858614
Coeffeientt
Srandard Error
t Stat
P-value
Lower
9596
Upper
9596
Intercept
4.049920982
1.042107341
3.886280064
0.000108739
2.004865844
6.094976119
Age
0.015626984
0.010365497
1.507396119
0.131984878
−
0.004714504
0.035968471
Family Size
−
0.093093463
0.084602383
−
1.100364552
0.271447442
−
0.259119103
0.072932177
Years of Education
0.005642075
0.06474525
0.087142685
0.930576157
−
0.121415476
0.132699626
\begin{array}{lcccccc}\hline & \text { Coeffeientt } & \text { Srandard Error } & \text { t Stat } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.049920982 & 1.042107341 & 3.886280064 & 0.000108739 & 2.004865844 & 6.094976119 \\\text { Age } & 0.015626984 & 0.010365497 & 1.507396119 & 0.131984878 & -0.004714504 & 0.035968471 \\\text { Family Size } & -0.093093463 & 0.084602383 & -1.100364552 & 0.271447442 & -0.259119103 & 0.072932177 \\\text { Years of Education } & 0.005642075 & 0.06474525 & 0.087142685 & 0.930576157 & -0.121415476 & 0.132699626 \\\hline\end{array}
Intercept
Age
Family Size
Years of Education
Coeffeientt
4.049920982
0.015626984
−
0.093093463
0.005642075
Srandard Error
1.042107341
0.010365497
0.084602383
0.06474525
t Stat
3.886280064
1.507396119
−
1.100364552
0.087142685
P-value
0.000108739
0.131984878
0.271447442
0.930576157
Lower
9596
2.004865844
−
0.004714504
−
0.259119103
−
0.121415476
Upper
9596
6.094976119
0.035968471
0.072932177
0.132699626
SUMALARY OUTPUT
\text { SUMALARY OUTPUT }
SUMALARY OUTPUT
Regrestion Staritticz
Multiple R.
0.005034034
R Square
2.53415
E
−
05
Adjuted R. Square
−
0.00100769
Standard Error
4.826368211
Observations
970
\begin{array}{lc}\hline \text { Regrestion Staritticz } & \\\hline \text { Multiple R. } & 0.005034034 \\\text { R Square } & 2.53415 \mathrm{E}-05 \\\text { Adjuted R. Square } & -0.00100769 \\\text { Standard Error } & 4.826368211 \\\text { Observations } & 970 \\\hline\end{array}
Regrestion Staritticz
Multiple R.
R Square
Adjuted R. Square
Standard Error
Observations
0.005034034
2.53415
E
−
05
−
0.00100769
4.826368211
970
0.115170636
0.115170636
0.115170636
ANOVA
d
f
S
S
M
S
F
Signffeance
F
Regresion
1
0.571425385
0.571425385
0.024531191
0.875573561
Reiidual
968
22548.42754
23.29383011
Total
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Signffeance } F \\\hline \text { Regresion } & 1 & 0.571425385 & 0.571425385 & 0.024531191 & 0.875573561 \\\text { Reiidual } & 968 & 22548.42754 & 23.29383011 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
ANOVA
Regresion
Reiidual
Total
df
1
968
969
SS
0.571425385
22548.42754
22548.99897
MS
0.571425385
23.29383011
F
0.024531191
Signffeance
F
0.875573561
Coefficienty
Standard Emor
t Star
P-value
Lower
9596
Upper
9596
Intercept
4.288825645
0.732966216
5.851327866
6.66867
E
−
09
2.850439806
5.727211483
Years of Education
0.009850586
0.062893064
0.156624361
0.875573561
−
0.113571873
0.133273045
Figure
6.3
\begin{array}{l}\begin{array}{lcccccc}\hline & \text { Coefficienty } & \text { Standard Emor } & \text { t Star } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.288825645 & 0.732966216 & 5.851327866 & 6.66867 E-09 & 2.850439806 & 5.727211483 \\\text { Years of Education } & 0.009850586 & 0.062893064 & 0.156624361 & 0.875573561 & -0.113571873 & 0.133273045 \\\hline\end{array}\\\text { Figure } 6.3\end{array}
Intercept
Years of Education
Coefficienty
4.288825645
0.009850586
Standard Emor
0.732966216
0.062893064
t Star
5.851327866
0.156624361
P-value
6.66867
E
−
09
0.875573561
Lower
9596
2.850439806
−
0.113571873
Upper
9596
5.727211483
0.133273045
Figure
6.3
-Chow tests are based on comparing the
Question 22
Essay
What is the coefficient of determination? What information does it provide? Explain.
Question 23
Multiple Choice
Suppose you are estimating salary as a function of age,education,hours of work and the number of young children and you are concerned that the salary functions differ for men and women.You could test this possibility by performing a
Question 24
Multiple Choice
Figure: Suppose that in the course of testing whether salary functions differ for males and females,you estimate the pooled and male and female results in Figure 6.4.
Pooled
\text { Pooled }
Pooled
ANOVA
d
f
S
S
M
S
F
Significance
F
Regression
4
2.30931
E
+
12
5.77328
E
+
11
282.1787278
1.2198
E
−
215
Residual
4286
8.76901
E
+
12
2045965635
Total
4290
1.10783
E
+
13
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 2.30931 \mathrm{E}+12 & 5.77328 \mathrm{E}+11 & 282.1787278 & 1.2198 \mathrm{E}-215 \\\text { Residual } & 4286 & 8.76901 \mathrm{E}+12 & 2045965635 & & \\\text { Total } & 4290 & 1.10783 \mathrm{E}+13 & & & \\\hline\end{array}\end{array}
ANOVA
Regression
Residual
Total
df
4
4286
4290
SS
2.30931
E
+
12
8.76901
E
+
12
1.10783
E
+
13
MS
5.77328
E
+
11
2045965635
F
282.1787278
Significance
F
1.2198
E
−
215
Male
\text { Male }
Male
ANOVA
d
f
S
S
M
S
F
Significance
F
Regression
4
1.54309
E
+
12
3.85772
E
+
11
131.8489492
9.4649
E
−
101
Residual
2136
6.24964
E
+
12
2925860190
Total
2140
7.79272
E
+
12
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 1.54309 \mathrm{E}+12 & 3.85772 \mathrm{E}+11 & 131.8489492 & 9.4649 \mathrm{E}-101 \\\text { Residual } & 2136 & 6.24964 \mathrm{E}+12 & 2925860190 & & \\\text { Total } & 2140 & 7.79272 \mathrm{E}+12 & & & \\\hline\end{array}\end{array}
ANOVA
Regression
Residual
Total
df
4
2136
2140
SS
1.54309
E
+
12
6.24964
E
+
12
7.79272
E
+
12
MS
3.85772
E
+
11
2925860190
F
131.8489492
Significance
F
9.4649
E
−
101
Female
\text { Female }
Female
ANOVA
of
S
S
M
S
F
Significance
F
Regression
4
6.15055
E
+
11
1.53764
E
+
11
153.1758618
2.2255
E
−
115
Residual
2145
2.15323
E
+
12
1003838471
Total
2149
2.76829
E
+
12
\begin{array}{lccccc} \text { ANOVA }\\\hline& \text { of } & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 6.15055 \mathrm{E}+11 & 1.53764 \mathrm{E}+11 & 153.1758618 & 2.2255 \mathrm{E}-115 \\\text { Residual } & 2145 & 2.15323 \mathrm{E}+12 & 1003838471 & & \\\text { Total } & 2149 & 2.76829 \mathrm{E}+12 & & &\\\hline\end{array}
ANOVA
Regression
Residual
Total
of
4
2145
2149
SS
6.15055
E
+
11
2.15323
E
+
12
2.76829
E
+
12
MS
1.53764
E
+
11
1003838471
F
153.1758618
Significance
F
2.2255
E
−
115
Figure 6.4 -The appropriate critical value for the Chow test in Figure 6.4 is
Question 25
Essay
What are the multiple linear regression assumptions required for OLS to be BLUE? Explain why each one is important.
Question 26
Essay
How do you perform a test of the overall significance of the regression function? What are the null and alternative hypothesis for this test? What is the rejection rule? What is the intuition for why the test works? Explain.
Question 27
Multiple Choice
Figure: Suppose that in the course of testing whether salary functions differ for males and females,you estimate the pooled and male and female results in Figure 6.4.
Pooled
\text { Pooled }
Pooled
ANOVA
d
f
S
S
M
S
F
Significance
F
Regression
4
2.30931
E
+
12
5.77328
E
+
11
282.1787278
1.2198
E
−
215
Residual
4286
8.76901
E
+
12
2045965635
Total
4290
1.10783
E
+
13
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 2.30931 \mathrm{E}+12 & 5.77328 \mathrm{E}+11 & 282.1787278 & 1.2198 \mathrm{E}-215 \\\text { Residual } & 4286 & 8.76901 \mathrm{E}+12 & 2045965635 & & \\\text { Total } & 4290 & 1.10783 \mathrm{E}+13 & & & \\\hline\end{array}\end{array}
ANOVA
Regression
Residual
Total
df
4
4286
4290
SS
2.30931
E
+
12
8.76901
E
+
12
1.10783
E
+
13
MS
5.77328
E
+
11
2045965635
F
282.1787278
Significance
F
1.2198
E
−
215
Male
\text { Male }
Male
ANOVA
d
f
S
S
M
S
F
Significance
F
Regression
4
1.54309
E
+
12
3.85772
E
+
11
131.8489492
9.4649
E
−
101
Residual
2136
6.24964
E
+
12
2925860190
Total
2140
7.79272
E
+
12
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 1.54309 \mathrm{E}+12 & 3.85772 \mathrm{E}+11 & 131.8489492 & 9.4649 \mathrm{E}-101 \\\text { Residual } & 2136 & 6.24964 \mathrm{E}+12 & 2925860190 & & \\\text { Total } & 2140 & 7.79272 \mathrm{E}+12 & & & \\\hline\end{array}\end{array}
ANOVA
Regression
Residual
Total
df
4
2136
2140
SS
1.54309
E
+
12
6.24964
E
+
12
7.79272
E
+
12
MS
3.85772
E
+
11
2925860190
F
131.8489492
Significance
F
9.4649
E
−
101
Female
\text { Female }
Female
ANOVA
of
S
S
M
S
F
Significance
F
Regression
4
6.15055
E
+
11
1.53764
E
+
11
153.1758618
2.2255
E
−
115
Residual
2145
2.15323
E
+
12
1003838471
Total
2149
2.76829
E
+
12
\begin{array}{lccccc} \text { ANOVA }\\\hline& \text { of } & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 6.15055 \mathrm{E}+11 & 1.53764 \mathrm{E}+11 & 153.1758618 & 2.2255 \mathrm{E}-115 \\\text { Residual } & 2145 & 2.15323 \mathrm{E}+12 & 1003838471 & & \\\text { Total } & 2149 & 2.76829 \mathrm{E}+12 & & &\\\hline\end{array}
ANOVA
Regression
Residual
Total
of
4
2145
2149
SS
6.15055
E
+
11
2.15323
E
+
12
2.76829
E
+
12
MS
1.53764
E
+
11
1003838471
F
153.1758618
Significance
F
2.2255
E
−
115
Figure 6.4 -Based on the results in Figure 6.4,you should
Question 28
Essay
How does the Adjusted R-squared differ from the R-squared? Why would the Adjusted R-squared be preferred to the R-squared?
Question 29
Multiple Choice
Figure: Suppose that in the course of testing whether salary functions differ for males and females,you estimate the pooled and male and female results in Figure 6.4.
Pooled
\text { Pooled }
Pooled
ANOVA
d
f
S
S
M
S
F
Significance
F
Regression
4
2.30931
E
+
12
5.77328
E
+
11
282.1787278
1.2198
E
−
215
Residual
4286
8.76901
E
+
12
2045965635
Total
4290
1.10783
E
+
13
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 2.30931 \mathrm{E}+12 & 5.77328 \mathrm{E}+11 & 282.1787278 & 1.2198 \mathrm{E}-215 \\\text { Residual } & 4286 & 8.76901 \mathrm{E}+12 & 2045965635 & & \\\text { Total } & 4290 & 1.10783 \mathrm{E}+13 & & & \\\hline\end{array}\end{array}
ANOVA
Regression
Residual
Total
df
4
4286
4290
SS
2.30931
E
+
12
8.76901
E
+
12
1.10783
E
+
13
MS
5.77328
E
+
11
2045965635
F
282.1787278
Significance
F
1.2198
E
−
215
Male
\text { Male }
Male
ANOVA
d
f
S
S
M
S
F
Significance
F
Regression
4
1.54309
E
+
12
3.85772
E
+
11
131.8489492
9.4649
E
−
101
Residual
2136
6.24964
E
+
12
2925860190
Total
2140
7.79272
E
+
12
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 1.54309 \mathrm{E}+12 & 3.85772 \mathrm{E}+11 & 131.8489492 & 9.4649 \mathrm{E}-101 \\\text { Residual } & 2136 & 6.24964 \mathrm{E}+12 & 2925860190 & & \\\text { Total } & 2140 & 7.79272 \mathrm{E}+12 & & & \\\hline\end{array}\end{array}
ANOVA
Regression
Residual
Total
df
4
2136
2140
SS
1.54309
E
+
12
6.24964
E
+
12
7.79272
E
+
12
MS
3.85772
E
+
11
2925860190
F
131.8489492
Significance
F
9.4649
E
−
101
Female
\text { Female }
Female
ANOVA
of
S
S
M
S
F
Significance
F
Regression
4
6.15055
E
+
11
1.53764
E
+
11
153.1758618
2.2255
E
−
115
Residual
2145
2.15323
E
+
12
1003838471
Total
2149
2.76829
E
+
12
\begin{array}{lccccc} \text { ANOVA }\\\hline& \text { of } & S S & M S & F & \text { Significance } F \\\hline \text { Regression } & 4 & 6.15055 \mathrm{E}+11 & 1.53764 \mathrm{E}+11 & 153.1758618 & 2.2255 \mathrm{E}-115 \\\text { Residual } & 2145 & 2.15323 \mathrm{E}+12 & 1003838471 & & \\\text { Total } & 2149 & 2.76829 \mathrm{E}+12 & & &\\\hline\end{array}
ANOVA
Regression
Residual
Total
of
4
2145
2149
SS
6.15055
E
+
11
2.15323
E
+
12
2.76829
E
+
12
MS
1.53764
E
+
11
1003838471
F
153.1758618
Significance
F
2.2255
E
−
115
Figure 6.4 -Based on the results of you the Chow test in Figure 6.4 you should
Question 30
Multiple Choice
Figure Suppose that in the course of testing whether Age and Family Size are jointly significant,you estimate the results in Figure 6.3.
SUMMARY OUTPUT
Regrestion Starittict
Muftiple R.
0.070494476
R Sequrt
0.004969471
Adigated R. Square
0.001879314
Standard Esror
4.819403326
Observations
970
\begin{array}{lc}\text { SUMMARY OUTPUT }\\\\\\\hline\text { Regrestion Starittict } & \\\hline \text { Muftiple R. } & 0.070494476 \\\text { R Sequrt } & 0.004969471 \\\text { Adigated R. Square } & 0.001879314 \\\text { Standard Esror } & 4.819403326 \\\text { Observations } & 970 \\\hline\end{array}
SUMMARY OUTPUT
Regrestion Starittict
Muftiple R.
R Sequrt
Adigated R. Square
Standard Esror
Observations
0.070494476
0.004969471
0.001879314
4.819403326
970
ANOVA
d
f
S
5
M
S
F
Signifieance
F
Regranion
3
112.0566012
37.3522004
1.608161442
0.185858614
Reaidual
966
22436.94237
23.22664841
Total
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S 5 & M S & F & \text { Signifieance } F \\\hline \text { Regranion } & 3 & 112.0566012 & 37.3522004 & 1.608161442 & 0.185858614 \\\text { Reaidual } & 966 & 22436.94237 & 23.22664841 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
ANOVA
Regranion
Reaidual
Total
df
3
966
969
S
5
112.0566012
22436.94237
22548.99897
MS
37.3522004
23.22664841
F
1.608161442
Signifieance
F
0.185858614
Coeffeientt
Srandard Error
t Stat
P-value
Lower
9596
Upper
9596
Intercept
4.049920982
1.042107341
3.886280064
0.000108739
2.004865844
6.094976119
Age
0.015626984
0.010365497
1.507396119
0.131984878
−
0.004714504
0.035968471
Family Size
−
0.093093463
0.084602383
−
1.100364552
0.271447442
−
0.259119103
0.072932177
Years of Education
0.005642075
0.06474525
0.087142685
0.930576157
−
0.121415476
0.132699626
\begin{array}{lcccccc}\hline & \text { Coeffeientt } & \text { Srandard Error } & \text { t Stat } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.049920982 & 1.042107341 & 3.886280064 & 0.000108739 & 2.004865844 & 6.094976119 \\\text { Age } & 0.015626984 & 0.010365497 & 1.507396119 & 0.131984878 & -0.004714504 & 0.035968471 \\\text { Family Size } & -0.093093463 & 0.084602383 & -1.100364552 & 0.271447442 & -0.259119103 & 0.072932177 \\\text { Years of Education } & 0.005642075 & 0.06474525 & 0.087142685 & 0.930576157 & -0.121415476 & 0.132699626 \\\hline\end{array}
Intercept
Age
Family Size
Years of Education
Coeffeientt
4.049920982
0.015626984
−
0.093093463
0.005642075
Srandard Error
1.042107341
0.010365497
0.084602383
0.06474525
t Stat
3.886280064
1.507396119
−
1.100364552
0.087142685
P-value
0.000108739
0.131984878
0.271447442
0.930576157
Lower
9596
2.004865844
−
0.004714504
−
0.259119103
−
0.121415476
Upper
9596
6.094976119
0.035968471
0.072932177
0.132699626
SUMALARY OUTPUT
\text { SUMALARY OUTPUT }
SUMALARY OUTPUT
Regrestion Staritticz
Multiple R.
0.005034034
R Square
2.53415
E
−
05
Adjuted R. Square
−
0.00100769
Standard Error
4.826368211
Observations
970
\begin{array}{lc}\hline \text { Regrestion Staritticz } & \\\hline \text { Multiple R. } & 0.005034034 \\\text { R Square } & 2.53415 \mathrm{E}-05 \\\text { Adjuted R. Square } & -0.00100769 \\\text { Standard Error } & 4.826368211 \\\text { Observations } & 970 \\\hline\end{array}
Regrestion Staritticz
Multiple R.
R Square
Adjuted R. Square
Standard Error
Observations
0.005034034
2.53415
E
−
05
−
0.00100769
4.826368211
970
0.115170636
0.115170636
0.115170636
ANOVA
d
f
S
S
M
S
F
Signffeance
F
Regresion
1
0.571425385
0.571425385
0.024531191
0.875573561
Reiidual
968
22548.42754
23.29383011
Total
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Signffeance } F \\\hline \text { Regresion } & 1 & 0.571425385 & 0.571425385 & 0.024531191 & 0.875573561 \\\text { Reiidual } & 968 & 22548.42754 & 23.29383011 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
ANOVA
Regresion
Reiidual
Total
df
1
968
969
SS
0.571425385
22548.42754
22548.99897
MS
0.571425385
23.29383011
F
0.024531191
Signffeance
F
0.875573561
Coefficienty
Standard Emor
t Star
P-value
Lower
9596
Upper
9596
Intercept
4.288825645
0.732966216
5.851327866
6.66867
E
−
09
2.850439806
5.727211483
Years of Education
0.009850586
0.062893064
0.156624361
0.875573561
−
0.113571873
0.133273045
Figure
6.3
\begin{array}{l}\begin{array}{lcccccc}\hline & \text { Coefficienty } & \text { Standard Emor } & \text { t Star } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.288825645 & 0.732966216 & 5.851327866 & 6.66867 E-09 & 2.850439806 & 5.727211483 \\\text { Years of Education } & 0.009850586 & 0.062893064 & 0.156624361 & 0.875573561 & -0.113571873 & 0.133273045 \\\hline\end{array}\\\text { Figure } 6.3\end{array}
Intercept
Years of Education
Coefficienty
4.288825645
0.009850586
Standard Emor
0.732966216
0.062893064
t Star
5.851327866
0.156624361
P-value
6.66867
E
−
09
0.875573561
Lower
9596
2.850439806
−
0.113571873
Upper
9596
5.727211483
0.133273045
Figure
6.3
-When testing for the joint significance of Age and Family Size (Figure 6.3) ,the appropriate test statistic is
Question 31
Essay
Write out the estimated sample regression function of y on x
1
and x
2
.Explain what each of the estimated values means.
Question 32
Essay
How do you perform a test of the joint significance of a subset of slope coefficients? What are the null and alternative hypothesis for this test? What is the rejection rule? What is the intuition for why the test works? Explain.
Question 33
Multiple Choice
Figure Suppose that in the course of testing whether Age and Family Size are jointly significant,you estimate the results in Figure 6.3.
SUMMARY OUTPUT
Regrestion Starittict
Muftiple R.
0.070494476
R Sequrt
0.004969471
Adigated R. Square
0.001879314
Standard Esror
4.819403326
Observations
970
\begin{array}{lc}\text { SUMMARY OUTPUT }\\\\\\\hline\text { Regrestion Starittict } & \\\hline \text { Muftiple R. } & 0.070494476 \\\text { R Sequrt } & 0.004969471 \\\text { Adigated R. Square } & 0.001879314 \\\text { Standard Esror } & 4.819403326 \\\text { Observations } & 970 \\\hline\end{array}
SUMMARY OUTPUT
Regrestion Starittict
Muftiple R.
R Sequrt
Adigated R. Square
Standard Esror
Observations
0.070494476
0.004969471
0.001879314
4.819403326
970
ANOVA
d
f
S
5
M
S
F
Signifieance
F
Regranion
3
112.0566012
37.3522004
1.608161442
0.185858614
Reaidual
966
22436.94237
23.22664841
Total
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S 5 & M S & F & \text { Signifieance } F \\\hline \text { Regranion } & 3 & 112.0566012 & 37.3522004 & 1.608161442 & 0.185858614 \\\text { Reaidual } & 966 & 22436.94237 & 23.22664841 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
ANOVA
Regranion
Reaidual
Total
df
3
966
969
S
5
112.0566012
22436.94237
22548.99897
MS
37.3522004
23.22664841
F
1.608161442
Signifieance
F
0.185858614
Coeffeientt
Srandard Error
t Stat
P-value
Lower
9596
Upper
9596
Intercept
4.049920982
1.042107341
3.886280064
0.000108739
2.004865844
6.094976119
Age
0.015626984
0.010365497
1.507396119
0.131984878
−
0.004714504
0.035968471
Family Size
−
0.093093463
0.084602383
−
1.100364552
0.271447442
−
0.259119103
0.072932177
Years of Education
0.005642075
0.06474525
0.087142685
0.930576157
−
0.121415476
0.132699626
\begin{array}{lcccccc}\hline & \text { Coeffeientt } & \text { Srandard Error } & \text { t Stat } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.049920982 & 1.042107341 & 3.886280064 & 0.000108739 & 2.004865844 & 6.094976119 \\\text { Age } & 0.015626984 & 0.010365497 & 1.507396119 & 0.131984878 & -0.004714504 & 0.035968471 \\\text { Family Size } & -0.093093463 & 0.084602383 & -1.100364552 & 0.271447442 & -0.259119103 & 0.072932177 \\\text { Years of Education } & 0.005642075 & 0.06474525 & 0.087142685 & 0.930576157 & -0.121415476 & 0.132699626 \\\hline\end{array}
Intercept
Age
Family Size
Years of Education
Coeffeientt
4.049920982
0.015626984
−
0.093093463
0.005642075
Srandard Error
1.042107341
0.010365497
0.084602383
0.06474525
t Stat
3.886280064
1.507396119
−
1.100364552
0.087142685
P-value
0.000108739
0.131984878
0.271447442
0.930576157
Lower
9596
2.004865844
−
0.004714504
−
0.259119103
−
0.121415476
Upper
9596
6.094976119
0.035968471
0.072932177
0.132699626
SUMALARY OUTPUT
\text { SUMALARY OUTPUT }
SUMALARY OUTPUT
Regrestion Staritticz
Multiple R.
0.005034034
R Square
2.53415
E
−
05
Adjuted R. Square
−
0.00100769
Standard Error
4.826368211
Observations
970
\begin{array}{lc}\hline \text { Regrestion Staritticz } & \\\hline \text { Multiple R. } & 0.005034034 \\\text { R Square } & 2.53415 \mathrm{E}-05 \\\text { Adjuted R. Square } & -0.00100769 \\\text { Standard Error } & 4.826368211 \\\text { Observations } & 970 \\\hline\end{array}
Regrestion Staritticz
Multiple R.
R Square
Adjuted R. Square
Standard Error
Observations
0.005034034
2.53415
E
−
05
−
0.00100769
4.826368211
970
0.115170636
0.115170636
0.115170636
ANOVA
d
f
S
S
M
S
F
Signffeance
F
Regresion
1
0.571425385
0.571425385
0.024531191
0.875573561
Reiidual
968
22548.42754
23.29383011
Total
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Signffeance } F \\\hline \text { Regresion } & 1 & 0.571425385 & 0.571425385 & 0.024531191 & 0.875573561 \\\text { Reiidual } & 968 & 22548.42754 & 23.29383011 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
ANOVA
Regresion
Reiidual
Total
df
1
968
969
SS
0.571425385
22548.42754
22548.99897
MS
0.571425385
23.29383011
F
0.024531191
Signffeance
F
0.875573561
Coefficienty
Standard Emor
t Star
P-value
Lower
9596
Upper
9596
Intercept
4.288825645
0.732966216
5.851327866
6.66867
E
−
09
2.850439806
5.727211483
Years of Education
0.009850586
0.062893064
0.156624361
0.875573561
−
0.113571873
0.133273045
Figure
6.3
\begin{array}{l}\begin{array}{lcccccc}\hline & \text { Coefficienty } & \text { Standard Emor } & \text { t Star } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.288825645 & 0.732966216 & 5.851327866 & 6.66867 E-09 & 2.850439806 & 5.727211483 \\\text { Years of Education } & 0.009850586 & 0.062893064 & 0.156624361 & 0.875573561 & -0.113571873 & 0.133273045 \\\hline\end{array}\\\text { Figure } 6.3\end{array}
Intercept
Years of Education
Coefficienty
4.288825645
0.009850586
Standard Emor
0.732966216
0.062893064
t Star
5.851327866
0.156624361
P-value
6.66867
E
−
09
0.875573561
Lower
9596
2.850439806
−
0.113571873
Upper
9596
5.727211483
0.133273045
Figure
6.3
-When testing for the joint significance of Age and Family Size (Figure 6.3) ,you should
Question 34
Essay
Why is multiple linear regression analysis such a valuable tool? Explain.
Question 35
Multiple Choice
Figure Suppose that in the course of testing whether Age and Family Size are jointly significant,you estimate the results in Figure 6.3.
SUMMARY OUTPUT
Regrestion Starittict
Muftiple R.
0.070494476
R Sequrt
0.004969471
Adigated R. Square
0.001879314
Standard Esror
4.819403326
Observations
970
\begin{array}{lc}\text { SUMMARY OUTPUT }\\\\\\\hline\text { Regrestion Starittict } & \\\hline \text { Muftiple R. } & 0.070494476 \\\text { R Sequrt } & 0.004969471 \\\text { Adigated R. Square } & 0.001879314 \\\text { Standard Esror } & 4.819403326 \\\text { Observations } & 970 \\\hline\end{array}
SUMMARY OUTPUT
Regrestion Starittict
Muftiple R.
R Sequrt
Adigated R. Square
Standard Esror
Observations
0.070494476
0.004969471
0.001879314
4.819403326
970
ANOVA
d
f
S
5
M
S
F
Signifieance
F
Regranion
3
112.0566012
37.3522004
1.608161442
0.185858614
Reaidual
966
22436.94237
23.22664841
Total
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S 5 & M S & F & \text { Signifieance } F \\\hline \text { Regranion } & 3 & 112.0566012 & 37.3522004 & 1.608161442 & 0.185858614 \\\text { Reaidual } & 966 & 22436.94237 & 23.22664841 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
ANOVA
Regranion
Reaidual
Total
df
3
966
969
S
5
112.0566012
22436.94237
22548.99897
MS
37.3522004
23.22664841
F
1.608161442
Signifieance
F
0.185858614
Coeffeientt
Srandard Error
t Stat
P-value
Lower
9596
Upper
9596
Intercept
4.049920982
1.042107341
3.886280064
0.000108739
2.004865844
6.094976119
Age
0.015626984
0.010365497
1.507396119
0.131984878
−
0.004714504
0.035968471
Family Size
−
0.093093463
0.084602383
−
1.100364552
0.271447442
−
0.259119103
0.072932177
Years of Education
0.005642075
0.06474525
0.087142685
0.930576157
−
0.121415476
0.132699626
\begin{array}{lcccccc}\hline & \text { Coeffeientt } & \text { Srandard Error } & \text { t Stat } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.049920982 & 1.042107341 & 3.886280064 & 0.000108739 & 2.004865844 & 6.094976119 \\\text { Age } & 0.015626984 & 0.010365497 & 1.507396119 & 0.131984878 & -0.004714504 & 0.035968471 \\\text { Family Size } & -0.093093463 & 0.084602383 & -1.100364552 & 0.271447442 & -0.259119103 & 0.072932177 \\\text { Years of Education } & 0.005642075 & 0.06474525 & 0.087142685 & 0.930576157 & -0.121415476 & 0.132699626 \\\hline\end{array}
Intercept
Age
Family Size
Years of Education
Coeffeientt
4.049920982
0.015626984
−
0.093093463
0.005642075
Srandard Error
1.042107341
0.010365497
0.084602383
0.06474525
t Stat
3.886280064
1.507396119
−
1.100364552
0.087142685
P-value
0.000108739
0.131984878
0.271447442
0.930576157
Lower
9596
2.004865844
−
0.004714504
−
0.259119103
−
0.121415476
Upper
9596
6.094976119
0.035968471
0.072932177
0.132699626
SUMALARY OUTPUT
\text { SUMALARY OUTPUT }
SUMALARY OUTPUT
Regrestion Staritticz
Multiple R.
0.005034034
R Square
2.53415
E
−
05
Adjuted R. Square
−
0.00100769
Standard Error
4.826368211
Observations
970
\begin{array}{lc}\hline \text { Regrestion Staritticz } & \\\hline \text { Multiple R. } & 0.005034034 \\\text { R Square } & 2.53415 \mathrm{E}-05 \\\text { Adjuted R. Square } & -0.00100769 \\\text { Standard Error } & 4.826368211 \\\text { Observations } & 970 \\\hline\end{array}
Regrestion Staritticz
Multiple R.
R Square
Adjuted R. Square
Standard Error
Observations
0.005034034
2.53415
E
−
05
−
0.00100769
4.826368211
970
0.115170636
0.115170636
0.115170636
ANOVA
d
f
S
S
M
S
F
Signffeance
F
Regresion
1
0.571425385
0.571425385
0.024531191
0.875573561
Reiidual
968
22548.42754
23.29383011
Total
969
22548.99897
\begin{array}{l}\text { ANOVA }\\\begin{array}{lccccc}\hline & d f & S S & M S & F & \text { Signffeance } F \\\hline \text { Regresion } & 1 & 0.571425385 & 0.571425385 & 0.024531191 & 0.875573561 \\\text { Reiidual } & 968 & 22548.42754 & 23.29383011 & & \\\text { Total } & 969 & 22548.99897 & & & \\\hline\end{array}\end{array}
ANOVA
Regresion
Reiidual
Total
df
1
968
969
SS
0.571425385
22548.42754
22548.99897
MS
0.571425385
23.29383011
F
0.024531191
Signffeance
F
0.875573561
Coefficienty
Standard Emor
t Star
P-value
Lower
9596
Upper
9596
Intercept
4.288825645
0.732966216
5.851327866
6.66867
E
−
09
2.850439806
5.727211483
Years of Education
0.009850586
0.062893064
0.156624361
0.875573561
−
0.113571873
0.133273045
Figure
6.3
\begin{array}{l}\begin{array}{lcccccc}\hline & \text { Coefficienty } & \text { Standard Emor } & \text { t Star } & \text { P-value } & \text { Lower } 9596 & \text { Upper } 9596 \\\hline \text { Intercept } & 4.288825645 & 0.732966216 & 5.851327866 & 6.66867 E-09 & 2.850439806 & 5.727211483 \\\text { Years of Education } & 0.009850586 & 0.062893064 & 0.156624361 & 0.875573561 & -0.113571873 & 0.133273045 \\\hline\end{array}\\\text { Figure } 6.3\end{array}
Intercept
Years of Education
Coefficienty
4.288825645
0.009850586
Standard Emor
0.732966216
0.062893064
t Star
5.851327866
0.156624361
P-value
6.66867
E
−
09
0.875573561
Lower
9596
2.850439806
−
0.113571873
Upper
9596
5.727211483
0.133273045
Figure
6.3
-Chow tests are used to determine whether
Question 36
Essay
How do you perform a test of the individual significance of a slope coefficient? What are the null and alternative hypothesis for this test? What is the rejection rule? What is the intuition for why the test works? Explain.