Services
Discover
Homeschooling
Ask a Question
Log in
Sign up
Filters
Done
Question type:
Essay
Multiple Choice
Short Answer
True False
Matching
Topic
Physics & Astronomy
Study Set
University Physics
Quiz 8: Momentum, Impulse, and Collisions
Path 4
Access For Free
Share
All types
Filters
Study Flashcards
Question 21
Multiple Choice
A billiard ball traveling at 3.00 m/s collides perfectly elastically with an identical billiard ball initially at rest on the level table. The initially moving billiard ball deflects 30.0° from its original direction. What is the speed of the initially stationary billiard ball after the collision?
Question 22
Multiple Choice
A car heading north collides at an intersection with a truck of the same mass as the car heading east. If they lock together and travel at 28 m/s at 46° north of east just after the collision, how fast was the car initially traveling? Assume that any other unbalanced forces are negligible.
Question 23
Multiple Choice
In the figure, determine the character of the collision. The masses of the blocks, and the velocities before and after are given, and no other unbalanced forces act on these blocks. The collision is
Question 24
Multiple Choice
A block of mass m = 8.40 kg, moving on a horizontal frictionless surface with a speed 4.20 m/s, makes a perfectly elastic collision with a block of mass M at rest. After the collision, the 8.40 block recoils with a speed of 0.400 m/s. In the figure, the blocks are in contact for 0.200 s. The magnitude of the average force on the 8.40-kg block, while the two blocks are in contact, is closest to
Question 25
Multiple Choice
Two automobiles traveling at right angles to each other collide and stick together. Car A has a mass of 1200 kg and had a speed of 25 m/s before the collision. Car B has a mass of 1600 kg. The skid marks show that, immediately after the collision, the wreckage was moving in a direction making an angle of 40° with the original direction of car A. What was the speed of car B before the collision, assuming that any other unbalanced forces are negligible?
Question 26
Multiple Choice
On a frictionless horizontal table, two blocks (A of mass 2.00 kg and B of mass 3.00 kg) are pressed together against an ideal massless spring that stores 75.0 J of elastic potential energy. The blocks are not attached to the spring and are free to move free of it once they are released from rest. The maximum speed achieved by each block is closest to:
Question 27
Multiple Choice
A 1000-kg car approaches an intersection traveling north at 20.0 m/s. A 1200-kg car approaches the same intersection traveling east at 22.0 m/s. The two cars collide at the intersection and lock together. Ignoring any external forces that act on the cars during the collision, what is the velocity of the cars immediately after the collision?
Question 28
Multiple Choice
Two ice skaters push off against one another starting from a stationary position. The 45.0-kg skater acquires a speed of 0.375 m/s. What speed does the 60.0-kg skater acquire? Assume that any other unbalanced forces during the collision are negligible.
Question 29
Multiple Choice
A pool player is attempting a fancy shot. He hits the cue ball giving it a speed of 5.57 m/s and directs its center on a path tangent to the surface of the target ball having the same mass as the cue ball. After the collision (on a frictionless table) the initially-stationary ball moves with a speed of 4.82 m/s. After the collision, the new speed of the cue ball and the relative direction of the balls are closest to
Question 30
Multiple Choice
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the opposite direction at 4.8 m/s. If the collision is perfectly elastic, what is the final speed of the 2.3-kg object?
Question 31
Multiple Choice
An 8.0-g bullet is shot into a 4.0-kg block, at rest on a frictionless horizontal surface (see the figure) . The bullet remains lodged in the block. The block moves into an ideal massless spring and compresses it by 8.7 cm. The spring constant of the spring is 2400 N/m. The initial velocity of the bullet is closest to
Question 32
Multiple Choice
A 15-g bullet is shot vertically into an 2-kg block. The block lifts upward 8.0 mm (see the figure) . The bullet penetrates the block and comes to rest in it in a time interval of 0.0010 s. Assume the force on the bullet is constant during penetration and that air resistance is negligible. The initial kinetic energy of the bullet is closest to
Question 33
Multiple Choice
A car of mass 1689 kg collides head-on with a parked truck of mass 2000 kg. Spring mounted bumpers ensure that the collision is essentially elastic. If the velocity of the truck is 17 km/h (in the same direction as the car's initial velocity) after the collision, what was the initial speed of the car?
Question 34
Multiple Choice
A 480-kg car moving at 14.4 m/s hits from behind a 570-kg car moving at 13.3 m/s in the same direction. If the new speed of the heavier car is 14.0 m/s, what is the speed of the lighter car after the collision, assuming that any unbalanced forces on the system are negligibly small?
Question 35
Multiple Choice
Two objects of the same mass move along the same line in opposite directions. The first mass is moving with speed v. The objects collide, stick together, and move with speed 0.100v in the direction of the velocity of the first mass before the collision. What was the speed of the second mass before the collision?
Question 36
Multiple Choice
In the figure, determine the character of the collision. The masses of the blocks, and the velocities before and after are given. The collision is
Question 37
Multiple Choice
A 5.00-kg ball is hanging from a long but very light flexible wire when it is struck by a 1.50-kg stone traveling horizontally to the right at 12.0 m/s. The stone rebounds to the left with a speed of 8.50 m/s, and the ball swings to a maximum height h above its original level. The value of h is closest to
Question 38
Short Answer
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at 20.0 m/s. The cars stick together. Assume that any other unbalanced forces are negligible. (a) What is the speed of the wreckage just after the collision? (b) In what direction does the wreckage move just after the collision?
Question 39
Multiple Choice
A 620-g object traveling at 2.1 m/s collides head-on with a 320-g object traveling in the opposite direction at 3.8 m/s. If the collision is perfectly elastic, what is the change in the kinetic energy of the 620-g object?